gokyuzu.org

İstifleme Metodu ve Süpernovalar

Önceden, çeşitli antik süpernovaları (biri 11 milyar diğeri de 11.4 milyar yıl önce patlamış) farketmiş olan California Üniversitesi’nden Jeff Cooke ve ekibinin 9 Haziran günü ‘Nature’ dergisinde yayınlanan makalesine göre, 8 milyar yaşında yeni bir süpernova daha keşfetti. Bunu da gökyüzü fotoğrafçılarının sıkça kullandığı ‘istifleme’ (stacking) metodu ile buldu.

Sanatçının gözünden bir yıldız, süpernova oluşturmadan önce dışarı attığı gaz kütleleri.

Telif Hakkı: NASA / Swift / Skyworks Digital / Dana Berry

İlk önce gözlemciler Kanada, Fransa ve Hawaii’deki teleskoplarla çekilmiş resimlerdeki uzakta bulunan gökadaları tespit ediyor.  Sonra da bu gökadaların değişik zamanlarda çekilmiş fotoğrafları birleştiriliyor ve fotoğraflar karşılaştırılıyor. 

Eğer gökadanın herhangi bir yerinde olağandışı bir parlama farkedilirse bir süpernovanın oluştuğu anlaşılıyor ve kırmızıya kayma değerleri ölçülüyor. Bu da yaşı hakkında bilgi veriyor.  

Jeff Cooke’un farkettiği süpernovalar 2.Tip süpernovalardan. Yani Güneş’in kütlesinin 50 ile 100 katı arasında değişen yıldızların oluştuğu süpernovalar. Bu yıldızlar patlamadan önce kütlelerinin büyük kısmını dışarı atarlar ve patlarken büyük miktarda mor ötesi ışın yayarlar. 

Şu aralar gökbilimciler bir 2. Tip süpernova için tetikteler. Eta Carinae adındaki yıldız (yaklaşık 7500 – 8000 ışık yılı uzaklıkta) kütlesinin çoğunu uzaya fırlattığı için böyle bir süpernova oluşturmaya aday.

Ayrıca bu yıldız oldukça değişken bir yıldız. 1843’te oluşturduğu bir parlama sayesinde bir saniyeliğine de olsa Güneş’ten sonra en parlak yıldız olan ve Büyük Köpek Takımyıldızı’nda bulunan Sirius kadar parladı. Uzun bir süre 8 kadirde kalırken 1998 – 1999 yıllarında parlaklığı %100 arttı. 

İlgili Bağlantılar:

  • Nature (Jeff Cooke’un Nature dergisindeki makalesi) 

Kaynak: Sky & Telescope

UUİ Akşam Gökyüzünde

Uluslararası Uzay İstasyonu (UUİ) önümüzdeki iki hafta boyunca akşam ve sabah gökyüzünde muhteşem geçişler yapıyor. UUİ’yi bir günde iki kez, üç kez hatta dört kez bile görebilirsiniz. Topluluk üyelerimizden M. Raşid Tuğral , bu akşam UUİ’nin muhteşem geçişlerinden birini yaklamayı başardı.

     Fotoğraf: M. Raşid Tuğral (AAT), Canon EOS 450D, ISO200 20s

Eğer geçtiğimiz günlerde UUİ’yi seyrettiyseniz muhtemelen bir dakika arkasından beliren ve UUİ’nin gitmiş olduğu rotayı izleyen başkı bir uyduyu daha fark etmiş olmalısınız. Bu kayıtlarda olmayan gizemli uydunun adı Progress 33, Rus yük gemisi. Raşid,  UUİ’nin ardından Progress 33’ü de yakaladığını belirtiyor. “Parlaklığı yaklaşık 2.5 kadirdendi”.

UUİ Akşam Gökyüzünde

Uluslararası Uzay İstasyonu (UUİ) önümüzdeki iki hafta boyunca akşam ve sabah gökyüzünde muhteşem geçişler yapıyor. UUİ’yi bir günde iki kez, üç kez hatta dört kez bile görebilirsiniz. Topluluk üyelerimizden M. Raşid Tuğral , bu akşam UUİ’nin muhteşem geçişlerinden birini yaklamayı başardı.

     Fotoğraf: M. Raşid Tuğral (AAT), Canon EOS 450D, ISO200 20s

Eğer geçtiğimiz günlerde UUİ’yi seyrettiyseniz muhtemelen bir dakika arkasından beliren ve UUİ’nin gitmiş olduğu rotayı izleyen başkı bir uyduyu daha fark etmiş olmalısınız. Bu kayıtlarda olmayan gizemli uydunun adı Progress 33, Rus yük gemisi. Raşid,  UUİ’nin ardından Progress 33’ü de yakaladığını belirtiyor. “Parlaklığı yaklaşık 2.5 kadirdendi”.

Eflâtun Günbatımları

Geçtiğimiz aylarda patlayan Sarychev yanardağının etkileri Türkiye’den de gözlenmeye başladı. Yanardağın patlamasıyla açığa çıkan tonlarca sülfürdioksit (SO2) gazı Dünya’nın her tarafına yayılmış durumda ve stratosferin üst katmanlarında bulunan bu gaz Güneş ışınlarını saçarak mora yakın bir rengin ortaya çıkmasına neden oluyor.

Fotoğraf: M. Raşid Tuğral (ODTÜ – AAT), Canon EOS 400D

Sarychev Yanardağı’nın hayaletini  gözlemlemek için Güneş battıktan 10 dakika sonra 20o-30oyüksekliğe bakın. Bunun için çıplak göz haricinde hiç bir şeye gereksiniminiz olmayacaktır.

Nadir Güneş Lekelerinin Nedeni

Güneş, bilindiği gibi, aktiflik bakımından minimum seviyede ve 2 yıldan beri şaşırtıcı bir biçimde Güneş lekelerine rastlamak çok zor. İlk defa Güneş fizikçileri, bunun nedenini anlayabilmiş olabilir.

Colorado’daki Amerikan Astronomi Derneği’nin (American Astronomical Society) basın toplantısında, araştırmacılara, Güneş’in içindeki püskürme akımının (jet stream) normalden daha yavaş bir biçimde yıldızın iç bölgelerinden geçtiğini ve bu durumun Güneş lekelerinin eksikliğine yol açtığı duyruldu.

Güneş’in iç yüzeyinin heliosismik haritası. Kırmızı – sarı eğri bantlar püskürme akımlarını gösteriyor. Siyah bölgeler ise Güneş lekeleri aktivitesini belirtiyor. Akım 22o‘ye ulaşınca lekeler oluşmaya başlıyor.  

Tuscon, Arizona’daki Amerikan Ulusal Gözlemevi’nden (National Solar Observatory) Rachel Howe ve Frank Hill, Güneş yüzeyinin 7000 km altındaki püskürme akımlarını belirlemek için “helioseismology” denilen bir teknik uyguladılar. 

11 yılda bir Güneş kutuplarına yakın yerlerde yeni püskürme akımları üretir. Akımlar yavaş yavaş kutuplardan ekvatora doğru hareket eder ve kritik enleme yani 22o‘e ulaşınca yeni Güneş lekeleri oluşmaya başlar.

Howe ve Hill, gelecek lekeleri oluşturacak olan akımların 10o‘lik bir yayı ancak 3 yılda aşabildiklerini farkettiler. Önceki Güneş döngüsündeki akımlar aynı yolu 2 yılda alabilmişlerdi.

Ama sonunda akımlar, Güneş aktivitesinin yıllar sonra yeniden başlayacağının habercisi olan kritik enleme ulaştı. 

Şu andaki Güneş aktivitesinin düşük olması araştırmacılara, 17 yüzyılda meydana gelen “Maunder Minimum”un tekrar yaşanabileceğini düşündürttü. Ama yeni sonuç Güneş aktivitesinin yeniden başlayacağını gösterdiği için bu tip kuramları çürüttü. 

Akımlar Güneş yüzeyini altında olduğu için direk olarak gözükmüyor. Hill ve Howe bu saklı akımları yakalamak için “helioseismology”i kullandı. Güneş’in içinde hareket eden kütleler, yüzeyde dalgalar oluşturuyor. “P dalgaları” denilen dalgalar tüm iç yüzeyi titreştiriyor ve Güneş’in büyük bir çan gibi sallanmasına neden oluyor. Bu titreşimleri inceleyerek içerde olan akımları farketmek mümkün. Aynı tip teknikler Dünya’nın iç yüzeyinin incelenemesi için jeolojistler tarafından da kullanılıyor.

Böyle bir olayda, araştırmacılar SOHO (The Solar and Heliospheric Observatory – Güneş ve Heliospheric Gözlemevi) ve GONG’dan (Global Oscillation Network Group – Küresel Salınım Ağ Grubu) gelen bilgileri kullanıyor. GONG, Güneş’teki titreşimleri Dünya’nın çeşitli yerlerinde gözlemleyen bir ağ grubu. SOHO ise aynı işlemi uzaydan yapıyor. 

Her ne kadar Güneş lekelerinin akımlara bağlı olduğu bilinse de nedeni tam olarak belli değil.     

Bir sanatçının gözünden SDO 

Telif Hakkı: NASA 

NASA tüm bu gizemleri çözmek için bu yıl sonunda SDO’yu (Solar Dynamics Observatory – Güneş Dinamikleri Gözlemevi) fırlatmayı düşünüyor. SDO gelişmiş heliosismik sensörlere sahip olduğundan Güneş’in içinde tam olarak ne olup bittiğini açıklayabilir.  

İlgili Bağlantılar:

  • SDO (Güneş Dinamikleri Gözlemevi’nin sitesi)
  • Grafikler (Basın toplantısında gösterilen grafikler)

Kaynak: Science@NASA

Nadir Güneş Lekelerinin Nedeni

Güneş, bilindiği gibi, aktiflik bakımından minimum seviyede ve 2 yıldan beri şaşırtıcı bir biçimde Güneş lekelerine rastlamak çok zor. İlk defa Güneş fizikçileri, bunun nedenini anlayabilmiş olabilir.

Colorado’daki Amerikan Astronomi Derneği’nin (American Astronomical Society) basın toplantısında, araştırmacılara, Güneş’in içindeki püskürme akımının (jet stream) normalden daha yavaş bir biçimde yıldızın iç bölgelerinden geçtiğini ve bu durumun Güneş lekelerinin eksikliğine yol açtığı duyruldu.

Güneş’in iç yüzeyinin heliosismik haritası. Kırmızı – sarı eğri bantlar püskürme akımlarını gösteriyor. Siyah bölgeler ise Güneş lekeleri aktivitesini belirtiyor. Akım 22o‘ye ulaşınca lekeler oluşmaya başlıyor.  

Tuscon, Arizona’daki Amerikan Ulusal Gözlemevi’nden (National Solar Observatory) Rachel Howe ve Frank Hill, Güneş yüzeyinin 7000 km altındaki püskürme akımlarını belirlemek için “helioseismology” denilen bir teknik uyguladılar. 

11 yılda bir Güneş kutuplarına yakın yerlerde yeni püskürme akımları üretir. Akımlar yavaş yavaş kutuplardan ekvatora doğru hareket eder ve kritik enleme yani 22o‘e ulaşınca yeni Güneş lekeleri oluşmaya başlar.

Howe ve Hill, gelecek lekeleri oluşturacak olan akımların 10o‘lik bir yayı ancak 3 yılda aşabildiklerini farkettiler. Önceki Güneş döngüsündeki akımlar aynı yolu 2 yılda alabilmişlerdi.

Ama sonunda akımlar, Güneş aktivitesinin yıllar sonra yeniden başlayacağının habercisi olan kritik enleme ulaştı. 

Şu andaki Güneş aktivitesinin düşük olması araştırmacılara, 17 yüzyılda meydana gelen “Maunder Minimum”un tekrar yaşanabileceğini düşündürttü. Ama yeni sonuç Güneş aktivitesinin yeniden başlayacağını gösterdiği için bu tip kuramları çürüttü. 

Akımlar Güneş yüzeyini altında olduğu için direk olarak gözükmüyor. Hill ve Howe bu saklı akımları yakalamak için “helioseismology”i kullandı. Güneş’in içinde hareket eden kütleler, yüzeyde dalgalar oluşturuyor. “P dalgaları” denilen dalgalar tüm iç yüzeyi titreştiriyor ve Güneş’in büyük bir çan gibi sallanmasına neden oluyor. Bu titreşimleri inceleyerek içerde olan akımları farketmek mümkün. Aynı tip teknikler Dünya’nın iç yüzeyinin incelenemesi için jeolojistler tarafından da kullanılıyor.

Böyle bir olayda, araştırmacılar SOHO (The Solar and Heliospheric Observatory – Güneş ve Heliospheric Gözlemevi) ve GONG’dan (Global Oscillation Network Group – Küresel Salınım Ağ Grubu) gelen bilgileri kullanıyor. GONG, Güneş’teki titreşimleri Dünya’nın çeşitli yerlerinde gözlemleyen bir ağ grubu. SOHO ise aynı işlemi uzaydan yapıyor. 

Her ne kadar Güneş lekelerinin akımlara bağlı olduğu bilinse de nedeni tam olarak belli değil.     

Bir sanatçının gözünden SDO 

Telif Hakkı: NASA 

NASA tüm bu gizemleri çözmek için bu yıl sonunda SDO’yu (Solar Dynamics Observatory – Güneş Dinamikleri Gözlemevi) fırlatmayı düşünüyor. SDO gelişmiş heliosismik sensörlere sahip olduğundan Güneş’in içinde tam olarak ne olup bittiğini açıklayabilir.  

İlgili Bağlantılar:

  • SDO (Güneş Dinamikleri Gözlemevi’nin sitesi)
  • Grafikler (Basın toplantısında gösterilen grafikler)

Kaynak: Science@NASA

Güneş Döngüsü 24

Amerikan Ulusal Okyanus ve Atmosferik Olaylar Dairesi (UOAOD – National Oceanic and Atmospheric Administration – NOAA)’nin başını çektiği ve NASA’nın sponsor olduğu uluslararası bir panelde yeni Güneş Döngüsü 24 için çeşitli tahminler yapıldı. Ortak görüş Güneş Döngüsü 24’ün maksimumunun ortalama bir değerden daha az bir sayıyla lekeyle geçeceği. 

Aralık 2008’deki UOAOD’nin GOES-13 Uydusu’nun gözlemlediği Güneş Işıması.

Oturum başkanı UOAOD Uzay Havası Tahmini Merkezi’nden (Space Weather Prediction Center) Doug Biesecker’e göre eğer tahminleri doğruysa Güneş Döngüsü 24, maksimumda sadece 90 lekeye sahip olacak. Bu sayıya göre, 1928 yılından beri en düşük seviyeli döngü olacak. 1928 yılında Güneş Döngüsü 16 maksimumu 78 lekeyle geçmişti.

Ama bu tür bir döngüyü güçsüz demek pek doğru değil gene de. 

Bu tür bir döngünün yaratabileceği çok şiddetli uzay havası olayları olabilir. 1859 yılında meydana gelen ve “Carrington Olayı” denilen jeomanyetik fırtına, 2013 yılında beklenen Güneş Döngüsü 24 ile aynı seviyede başka bir döngüde meydana geldi. Güneş ışımalarını inceleyen Richard Carrington’a göre bu fırtına sırasında, kablolar elektriklendi, telgraf ofislerinde yangın çıktı ve hatta oluşan Kuzey Işıkları yani auroralar altında insanlar çok rahat bir biçimde kitabını okuyabildi.

Güneş Döngüsü 23’ün gözlemlenen ve Güneş Döngüsü 24’ün beklenen Güneş Lekeleri sayıları.

Telif Hakkı: UOAOD / Uzay Havası Tahmini Merkezi 

Bu tür bir fırtınanın günümüzde yaratabileceği hasarlar çok büyük. Son araştırmalara göre böyle bir hasarın maliyeti 1-2 trilyon dolar kadar. Katrina Kasırgası’nın maliyeti ise 80 – 125 milyar dolar kadardı.

Güneş Döngüleri yaklaşık 11 yıl periyotludur. Maksimumları ise çok düşük ya da çok yüksek olabilir. Bazı zamanlarda ise minimumlar çok uzun sürebilir. 17. yüzyılda yaklaşık 70 yıl süren Maunder Minimumu buna bir örnek.    

1610’dan 2008’e kadar ortalama yıllık Güneş Lekesi sayısı. Araştırmacılar, Güneş Döngüsü 24’ün, kırmızı okla işaretlenen 1928 yılında meydana gelen döngüye benzeyeceğini düşünüyor.

Telif Hakkı: NASA / MSFC 

Şu anda Güneş Döngüsü, geçen yüzyılın en düşük konumunda. 2008 ve 2009 yılında ölçülen Güneş rüzgarlar seviyesi ve lekeleri sayısı çok düşüktü.

Buna rağmen, Güneş yavaş yavaş hayat belirtileri göstermeye başladı. Lekelere artık daha sıklıkla rastlanıyor. Yüksek plazma miktarının Güneş yüzeyinde güç kazandığı ve yavaş yavaş Güneş’in ekvatoruna toplandığı gözlemleniyor. Radyo yayılımlarında da bir yükselme farkediliyor. 

Araştırmacılara göre Güneş Döngüsü 24, 2013 Mart’ında en yüksek değerine ulaşacak.  

Kaynak: Science@NASA

Güneş Döngüsü 24

Amerikan Ulusal Okyanus ve Atmosferik Olaylar Dairesi (UOAOD – National Oceanic and Atmospheric Administration – NOAA)’nin başını çektiği ve NASA’nın sponsor olduğu uluslararası bir panelde yeni Güneş Döngüsü 24 için çeşitli tahminler yapıldı. Ortak görüş Güneş Döngüsü 24’ün maksimumunun ortalama bir değerden daha az bir sayıyla lekeyle geçeceği. 

Aralık 2008’deki UOAOD’nin GOES-13 Uydusu’nun gözlemlediği Güneş Işıması.

Oturum başkanı UOAOD Uzay Havası Tahmini Merkezi’nden (Space Weather Prediction Center) Doug Biesecker’e göre eğer tahminleri doğruysa Güneş Döngüsü 24, maksimumda sadece 90 lekeye sahip olacak. Bu sayıya göre, 1928 yılından beri en düşük seviyeli döngü olacak. 1928 yılında Güneş Döngüsü 16 maksimumu 78 lekeyle geçmişti.

Ama bu tür bir döngüyü güçsüz demek pek doğru değil gene de. 

Bu tür bir döngünün yaratabileceği çok şiddetli uzay havası olayları olabilir. 1859 yılında meydana gelen ve “Carrington Olayı” denilen jeomanyetik fırtına, 2013 yılında beklenen Güneş Döngüsü 24 ile aynı seviyede başka bir döngüde meydana geldi. Güneş ışımalarını inceleyen Richard Carrington’a göre bu fırtına sırasında, kablolar elektriklendi, telgraf ofislerinde yangın çıktı ve hatta oluşan Kuzey Işıkları yani auroralar altında insanlar çok rahat bir biçimde kitabını okuyabildi.

Güneş Döngüsü 23’ün gözlemlenen ve Güneş Döngüsü 24’ün beklenen Güneş Lekeleri sayıları.

Telif Hakkı: UOAOD / Uzay Havası Tahmini Merkezi 

Bu tür bir fırtınanın günümüzde yaratabileceği hasarlar çok büyük. Son araştırmalara göre böyle bir hasarın maliyeti 1-2 trilyon dolar kadar. Katrina Kasırgası’nın maliyeti ise 80 – 125 milyar dolar kadardı.

Güneş Döngüleri yaklaşık 11 yıl periyotludur. Maksimumları ise çok düşük ya da çok yüksek olabilir. Bazı zamanlarda ise minimumlar çok uzun sürebilir. 17. yüzyılda yaklaşık 70 yıl süren Maunder Minimumu buna bir örnek.    

1610’dan 2008’e kadar ortalama yıllık Güneş Lekesi sayısı. Araştırmacılar, Güneş Döngüsü 24’ün, kırmızı okla işaretlenen 1928 yılında meydana gelen döngüye benzeyeceğini düşünüyor.

Telif Hakkı: NASA / MSFC 

Şu anda Güneş Döngüsü, geçen yüzyılın en düşük konumunda. 2008 ve 2009 yılında ölçülen Güneş rüzgarlar seviyesi ve lekeleri sayısı çok düşüktü.

Buna rağmen, Güneş yavaş yavaş hayat belirtileri göstermeye başladı. Lekelere artık daha sıklıkla rastlanıyor. Yüksek plazma miktarının Güneş yüzeyinde güç kazandığı ve yavaş yavaş Güneş’in ekvatoruna toplandığı gözlemleniyor. Radyo yayılımlarında da bir yükselme farkediliyor. 

Araştırmacılara göre Güneş Döngüsü 24, 2013 Mart’ında en yüksek değerine ulaşacak.  

Kaynak: Science@NASA

Dünya-Güneş Arası Mesafenin Artışı

Yıllardır gökbilimciler, Güneş ile Dünya arası mesafeyi ölçmeye çalışmışlardır. Milattan önce 3. yüzyılda Yunanlı Aristarkus, Güneş merkezli sistemi ortaya atan ilk kişiydi. Yalnız ona göre Güneş, Ay’dan sadece 20 kat uzaklıktaydı. Halbuki gerçekte 400 kat uzaklıkta.
Güneş ve Dünya
Güneş-Dünya arası mesafe her yıl 15 cm artıyor. Telif Hakkı: NASA
20. yüzyılın sonlarına doğru, bilimadamları mesafeyi tam olarak ölçebildiler. Bu mesafeye “Gökbilim Birimi” (Astronomical Unit) denildi. Uzay araçlarının da yardımıyla mesafe tam olarak 149,597,870.696 km bulundu. Rus bilimadamları Gregoriy A. Krasinsky ve Victor A. Brumberg, 2004 yılında Güneş ve Dünya’nın birbirlerinden az da olsa uzaklaştıklarını keşfettiler: sadece yılda 15 cm. Peki neden 2 gökcismi birbirlerinden uzaklaşıyor? Bununla ilgili bir iddia Güneş’in kütlesinin Güneş rüzgarları ve füzyon tepkimeleri nedeniyle azalması. Bu nedenle de Güneş’in kütle çekim kuvvetinin azalması. Başka bir iddia da evrensel genişleme ve karanlık maddenin etkisi nedeniyle çekim sabiti, G’nin azalması. Ama hiçkimse bunları tatmin edici bir şekilde açıklayamadı. Ama Japonya, Hirosaki Üniversitesi’nden Takaho Miura ve üç meslektaşı bir cevap üstüne çalışıyorlar. Avrupa bilimsel makale dergisi Astronomy & Astrophysics ‘de çıkan makaleye göre Güneş ile Dünya arası mesafenin artmasının nedeni gelgit etkisi. Bu Ay’ı uzaklaştıran nedenin aynısı: Ay’ın etkilediği okyanus suları, Dünya’nın açısal enerjisini Ay’a aktarıyor. Sonuç olarak da her yıl Ay’ın yörüngesi 4 cm genişlerken Dünya’nın dönüş hızı da 0.000017 saniye yavaşlıyor. Miura ve takımı da Dünya’nın kütlesinin az da olsa arttığını ve Güneş üzerinde ufak bir gelgit etkisi yarattığını kabul ettiler. Hesaplarına göre Güneş’in dönüş hızı her yıl 0.00003 saniye azalırken Güneş açısal momentini kaybetmeye başlıyor ve Güneş ile Dünya arası mesafe de büyüyor. Kaynak: NewScientist

Dünya-Güneş Arası Mesafenin Artışı

Yıllardır gökbilimciler, Güneş ile Dünya arası mesafeyi ölçmeye çalışmışlardır. Milattan önce 3. yüzyılda Yunanlı Aristarkus, Güneş merkezli sistemi ortaya atan ilk kişiydi. Yalnız ona göre Güneş, Ay’dan sadece 20 kat uzaklıktaydı. Halbuki gerçekte 400 kat uzaklıkta.
Güneş ve Dünya Güneş-Dünya arası mesafe her yıl 15 cm artıyor. Telif Hakkı: NASA
20. yüzyılın sonlarına doğru, bilimadamları mesafeyi tam olarak ölçebildiler. Bu mesafeye “Gökbilim Birimi” (Astronomical Unit) denildi. Uzay araçlarının da yardımıyla mesafe tam olarak 149,597,870.696 km bulundu. Rus bilimadamları Gregoriy A. Krasinsky ve Victor A. Brumberg, 2004 yılında Güneş ve Dünya’nın birbirlerinden az da olsa uzaklaştıklarını keşfettiler: sadece yılda 15 cm. Peki neden 2 gökcismi birbirlerinden uzaklaşıyor? Bununla ilgili bir iddia Güneş’in kütlesinin Güneş rüzgarları ve füzyon tepkimeleri nedeniyle azalması. Bu nedenle de Güneş’in kütle çekim kuvvetinin azalması. Başka bir iddia da evrensel genişleme ve karanlık maddenin etkisi nedeniyle çekim sabiti, G’nin azalması. Ama hiçkimse bunları tatmin edici bir şekilde açıklayamadı. Ama Japonya, Hirosaki Üniversitesi’nden Takaho Miura ve üç meslektaşı bir cevap üstüne çalışıyorlar. Avrupa bilimsel makale dergisi Astronomy & Astrophysics ‘de çıkan makaleye göre Güneş ile Dünya arası mesafenin artmasının nedeni gelgit etkisi. Bu Ay’ı uzaklaştıran nedenin aynısı: Ay’ın etkilediği okyanus suları, Dünya’nın açısal enerjisini Ay’a aktarıyor. Sonuç olarak da her yıl Ay’ın yörüngesi 4 cm genişlerken Dünya’nın dönüş hızı da 0.000017 saniye yavaşlıyor. Miura ve takımı da Dünya’nın kütlesinin az da olsa arttığını ve Güneş üzerinde ufak bir gelgit etkisi yarattığını kabul ettiler. Hesaplarına göre Güneş’in dönüş hızı her yıl 0.00003 saniye azalırken Güneş açısal momentini kaybetmeye başlıyor ve Güneş ile Dünya arası mesafe de büyüyor. Kaynak: NewScientist