Bir dış gezegen olan Satürn, Güneş çevresinde yaklaşık 30 yıllık dolanma süresi ve yaklaşık 12.5 ay olan kavuşum dönemi nedeniyle, sabit yıldızlar arasında çok yavaş ilerlediği için aynı takım yıldız içinde 2 yıldan daha uzun süre kalır.
Muhtemelen ilk gözleyeceğiniz gezegendir Satürn, çünkü yılın büyük bölümü gökyüzündedir. Güneşe Jüpiter’den daha uzak ve biraz daha küçük olduğu için Satürn, daha sönük görülür. Sarımsı rengi ve 1 Kadir parlaklığı ile yılın büyük bir bölümünde kolaylıkla gözlenebilir. Kuşakları yuvarlak hatlıdır; ekvator bölgesi genellikle parlak krem renklidir. Kutuplar genellikle loştur ve hiçbir yerinde canlı renklere rastlanmaz. Halkaların konumuna bağlı olarak parlaklığı 30 yıllık dönemlerle -0,3 Kadire ulaşabilir. Satürn’ün halkaları orta boy teleskoplar ile ayırt edilebilir. Gezegenin 29,4 yıllık yörünge çevrimi içinde, Dünya iki kez Satürn’ün halkalarının düzleminden geçer, bu durumda halkalar görülemez. Kendi etrafındaki dönme hızının büyüklüğü nedeniyle basık bir görünüme sahiptir.
Satürn’ün uydularından sadece Titan küçük teleskoplarla gözlenebilir. Rhea ve Lapetus uyduları 7.5 cm’lik teleskoplar ile gözlenebilirken, daha büyük teleskoplar ile Enceladus, Tethys ve Dione uyduları görülebilir. Son olarak ise Hyperion ve Phoebe uyduları için 20 cm’lik teleskopla gözlem yapılmalıdır.
Ek olarak Satürn gözleminde kırmızı, turuncu, sarı renk filtrelerin yanı sıra #58 (yeşil), #56 (açık yeşil), #82A( açık mavi) renk filtreler kulanılabilir, böylelikle kontrastı arttırarak daha kaliteli görüntüler elde edebilirsiniz.
Güneş sistemimizin yedinci gezgeni olan Uranüs, çok rüzgarlı ve soğuk bir gezegendir. Çevresinde 13 halka ve 27 uydu bulunur.Adını Yunan Mitolojisi’nde Gökyüzü Tanrısı olan Uranos’tan alır.
Uranüs diğer gezegenler gibi 4.5 milyar yıl önce kütleçekim etkisiyle gaz ve tozlardan buz devine dönüştüğü ve 4 milyar yıl kadar önce de komşusu olan Neptün gibi güneşten uzaklaşarak 7.gezegen olduğu düşünülüyor.
Uranüs, 25,362 kilometrelik çapıyla Dünya’dan 4 kat daha geniştir. Ortalama 2,9 milyar kilometrelik bir uzaklığıyla Uranüs, Güneş’ten yaklaşık 19.8 astronomik birim uzaklıktadır. Bu mesafeden ışığın Uranüs’e ulaşması 2 saat 40 dakika sürer!
Uranüs, tarihte teleskopla keşfedilen ilk gezegendir. William Herschel 1781 yılında rastgele gökyüzü gözlemi yaparken Uranüs’ü keşfetmiş fakat bir kuyrukluyıldız ya da yıldız olduğunu düşünmüştür en başta. Uranüs’ün bir gezegen olduğu iki yıl sonra, Johann Elert Bode’nin gözlemleri sonucunda kanıtlanmıştır.
William Herschel ilk olarak gezegene ülkenin kralı Üçüncü George’a ithafen “Georgium Sidus” denmesini istemiş fakat Bode’nin de önerisiyle Satürn’ün babası, Yunan Mitolojisi’ndeki Gökyüzü Tanrısı anlamına gelen Uranüs adı verilmiştir.
Yörünge ve Dönüş:
Uranüs’ün kendi çevresinde bir tur atması, bir Uranüs günü, 17 saat 4 dakika sürer. Güneş çevresindeki yörüngesini tamamlaması ise 30,687 Dünya günü yani 84 Dünya yılı süre alır.
Uranüs,ekseni yörüngesine neredeyse dik hizada olan tek gezegendir. Kendi eksenindeki 97,77 derece eğiklikten dolayı güneş çevresinde adeta bir top gibi yuvarlanarak ilerler.Bu eğikliğin sebebinin uzun zaman önce Dünya büyüklüğünde bir gök cismi ile çarpışması sonucu olabileceği düşünülüyor. Eksenindeki eğiklik ayrıca bir kutbun 21 yıl boyunca ışık almasını sağlarken diğer kutbu 21 yıl boyunca karanlığa mahkum eder.
Uranüs aynı zamanda Venüs ile benzer olarak, diğer gezegenlerin aksi yönüne, yani doğudan batıya döner.
Daha ayrıntılı bilgi için sitemizdeki diğer yazıya göz atabilirisiniz;
Venüs ve Uranüs: Güneş Sistemi’nin Aykırı Çocukları
Gezegen Yapısı:
Uranüs güneş sisteminde bulunan iki buz devinden biridir(diğeri Neptün). Gezegenin %80’i sıcak yoğun ve buzlu maddelerden oluşur-su,metan ve amonyak-.Bu maddeler eriyik halde bulunan ağır bir çekirdeğin üzerinde bulunur. Çekirdek çevresinde sıcaklık 4,982 dereceye kadar çıkabilir. Bu aşırı sıcak mantonun, üzerindeki atmosferin ağırlığından kaynaklanan devasa basıncın etkisiyle kaynayamadığı ve buranın elektriksel olarak iletken olduğu, gezegenin manyetik alanını ürettiği sanılmaktadır.
Uranüs komşusu Neptün’den daha büyük olmasına rağmen yoğunluk olarak Neptün’den daha az yoğundur. Hatta güneş sisteminde Satürn’den sonra ikinci en az yoğun gezegendir.
Uranüs mavi-yeşil rengini atmosferindeki metandan alır. Güneş ışığı atmosferden geçerek yüzeye çarpar ve oradan da metan bulutlarına yansır. Metan güneş ışığının kırmızı ve turuncu renklerini soğurduğu için atmosfer mavi-yeşil olarak görünür.
Yüzey:
Bir buz devi olan Uranüs tam anlamıyla bir yüzeye sahip değildir. Gezegen daha çok yüzen sıvılardan oluşur. Bir uzay aracı Uranüs’e gitse inebileceği bir yüzey bulamaz, hatta yüksek basınç ve sıcaklıktan dolayı paramparça olur.
Atmosfer:
Uranüs’ün atmosferi çoğunlukla hidrojen ve helyum, biraz da su ve amonyaktan oluşur. Atmosferindeki metan ise kendine özgü mavi rengi verir.
Voyager 2 uzay aracı 1986 yılındaki gözlemleri sonucunda ayrık bulutlar, Büyük Karanlık Nokta ve küçük Karanlık Nokta’yı gözlemlerken, son yıllarda yapılan gözlemler sonucunda Uranüs’ün ekinoks zamanlarında değişen bulutlarıyla dinamik bir yapısı olduğu keşfedildi.
Uranüs’ün yüzeyinde sıcaklık -224,2 dereceye kadar düşebilir, bu da Uranüsün bazı bölgelerini Güneş’e en uzak gezegen olan Neptün’den bile soğuk yapar.
Uranüs’te rüzgarlar saatte 900 km hıza kadar ulaşabilir. Rüzgarlar ekvatorda dönüş yönünün tersine doğru eserken, kutuplara yaklaştıkça dönüş yönünde esmeye başlar.
Ek olarak Uranüs’ün atmosferi organizmalara pek elverişli yaşam koşulları sağlamaz. Soğuk iklimi, şiddetli rüzgarları, atmosferindeki gaz bileşenleri ve yüksek basınçtan dolayı organizmaların adapte olması çok zordur.
Uydular:
Uranüs’ün bilinen 27 uydusu vardır. Uranüs’ün uyduları diğer gezegenler aksine adlarını mitolojiden değil William Shakespeare ve Alexander Pope karakterlerinden alır.
Uranüs’ün uydularının tamamının su ve kayadan oluştuğu sanılmaktadır. Tam olarak nasıl oluştukları ve bileşenleri bilinmese de, Uranüs’ün çekim etkisine yakalanmış asteroidler oldukları düşünülmektedir.
Uyduların çoğunluğu Voyager 2 uzay aracının gözlemleri ve fotoğrafları sonucu keşfedilmiştir.
Uranüs iki ayrı sıra halka bulundurur. İç kısımda bulunan dokuz halka çoğunlukla sık, sönük ve gri halkalardan oluşur. İki tane dış halka bulunur. Bunlardan içte bulunan halka kızıl, dıştaki halka ise daha mavimsidir.
Halkaların adı içten dışa doğru; Zeta,6,5,4,Alpha, Beta, Eta, Gamma, Delta, Lambda, Epsilon, Nu ve Mu’dur. Bazı büyük halkaların çevresinde toz bulutları bulunur.
Magnetosfer:
Uranüs’ün sıra dışı ve düzensiz bir magnetosferi vardır. Uranüs’ün magnetosferi diğer gezegenlerden farklı olarak gezegenin dönüş ekseninden 60 derece eğiktir. Bundan dolayı Uranüs’te gerçekleşen auroralar Dünya, Jüpiter ve Satürn’deki gibi kutuplarda gözlenmez.
Uranüs 6 kadirlik bir parlaklığa sahiptir. İnsan gözünün sınırlarına dayanan bu parlaklık ile çıplak gözle, açık ve temiz gökyüzü koşullarında bile sadece küçük sönük bir yıldız gibi görülebilir. Küçük teleskoplarla yeşil bir yuvarlak olarak görülür, ayrıntı seçilemez. Uydularından Titania (13.7 Kadir) ve Oberon (14.1 Kadir) 20 cm’lik teleskoplar ile görülebilir. 84 yıl süren dolanım süresi ile Uranüs bir takımyıldızdan diğerine çok yavaş geçer.
Gelin sizinle bu yazımızda yıldız evriminin son halkası olan nötron yıldızları ve onların dönen ikizleri olan atarcalara göz atalım.
Nötron Yıldızlarının Oluşumu:
Nötron yıldızları, Tip-II süpernovaların patlaması sonucu oluşur. Tip-II süpernova patlamaları ana yıldızı yok etse bile merkezinde küçük fakat aşırı yoğun bir kalıntı bırakır.
Tip-II süpernova patlamaları esnasında merkezde elektron ve protonlar yüksek bir hızda çarpışarak nötron ve nötrinoları oluşturur. Nötrinolar merkezi neredeyse ışık hızında terk ederek nötronlardan oluşan merkezi ivmelendirir ve merkezdeki parçacıklar etkileşim haline geçene kadar çarpışmayı devam ettirir. Bu noktadan sonra çekirdek büyük bir güçte patlayarak güçlü bir şok dalgası yayar uzaya. Bu şok dalgası tam olarak merkezde olmaz ve bundan dolayı merkezde yoğun bir çekirdek bırakarak yıldızın geri kalanını yok eder. Araştırmacılar merkezde kalan yoğun nötron çekirdeğe nötron yıldızı deseler dahi nükleer reaksiyonları durduğu için teknik olarak yıldız sayılmazlar.
Nötron Yıldızlarının Özellikleri:
Nötron yıldızları çok küçük fakat çok yoğunlardır. Ortalama 20 kilometrelik çaplarıyla küçük bir asteroid ya da bir şehir boyutunda olmalarına rağmen 1017-1018 kg/m3’e ulaşabilen yoğunluklarıyla evrendeki en yoğun maddeler olarak da adlandırılabilirler.
Nötron yıldızları soğuk denebilecek katı bir merkeze sahiptir. Hatta üzerinde durmayı bile hayal edebilirsiniz, tabi aşırı güçlü yerçekimini saymazsak. Çekim etkileri o kadar güçlüdür ki Dünya’da 70 kg gelen bir insan nötron yıldızında 10 trilyon kg gelir. Böyle bir yerçekimi sizi kağıttan bile ince bir hale getirir!
Yukarıdaki özelliklerin yanı sıra yeni oluşan nötron yıldızlarının eşsiz iki özelliği daha vardır. Bunlardan bir tanesi saniyelik periyodlarla çok hızlı bir şekilde dönmeleridir. Bu dönmeye sebep olan şey açısal momentumun korunumu yasasıdır- dönen cisimlerin yarıçapı küçüldükçe daha hızlı dönerler.
İkinci özellikleri ise yeni oluşmuş nötron yıldızlarının çok güçlü manyetik alana sahip olmalarıdır. Öncü yıldızın çökmesiyle çekirdekte sıkışan maddeler aynı zamanda manyetik alan çizgilerini birbirine yaklaştırarak yeni doğan nötron yıldızının Dünya’dan trilyon kat daha fazla manyetik alana sahip olmasına yol açar.
Zaman içinde nötron yıldızının uzaya enerji yaydıkça yavaşlaması ve manyetik alanının azalması beklenirken doğumundan milyonlarca yıl sonra, evrendeki en garip objeyi oluşturur; pulsarları yani atarcaları.
Atarcalar :
Samanyolu Galaksisi’nde bilinen 1500 atarca vardır. Her atarca kendine özgü periyotta ve uzunlukta ışıma yapar. Bazı durumlarda bu periyodlar milyon yıl içinde bir-iki saniye değişebilir. Şu an yapılabilecek en basit ve en doğru atarca tanımı; Dünya’ya belirli periyodlarda ışıma yapan, dönen nötron yıldızlarıdır. Hatta o kadar hızlı dönerler ki bilinen en hızlı atarca saniyede tamı tamına 716 tur atar! Belirli yönlere anlık radyo dalgası ve X-ışını yayarlar. Bu nedenle gözlemlendikleri zaman tıpkı bir deniz feneri gibi görünürler. Deniz fenerinin ışığı ile yerini belli etmesi gibi bu cisimler de yaydıkları ışınlarla uzayda yerlerini belli ederler. Yani evrenden yayılan radyo dalgalarını dinleyerek bu cisimlerin yerlerini tespit etmek mümkündür.
Atarcalar dönerken merkezdeki parçacıklar ışık hızına yakın bir hızda manyetik kutuplar arasında geçiş yaparlar. Bu parçacıklar aynı zamanda çok güçlü ve parlak bir ışıma gerçekleştirirler. Tıpkı Dünya’da olduğu gibi atarcalarda da manyetik eksen ile dönüş ekseni aynı hizada değildir. Bundan dolayı atarcalar dönerken bu güçlü ışık ışınları, deniz feneri ışığının yaptığı gibi etrafa ışık yayar.
Bazı atarcalar X-ışını yayar. Aslında bu ışık sürekli olarak yayılsa da manyetik kutuplardan çıkan ışınım bizim görüş açımıza girdiği sürece biz atarcaları gözlemleyebiliriz. Yani ışınımın sürekli olmasına rağmen Dünya’dan belirli sürelerde gözlenebildiği için bize periyodik ışınım yapan bir kaynak olarak görünür. Bu da atarcaların deniz feneri gibi ışınım yaptığını düşünmemize yol açar.
Yengeç Nebulası’nda bulunan bir atarca
Atarcaların Keşfi:
İlk atarca keşfi 1967 yılında Cambridge Üniversitesi öğrencisi Jocelyn Bell tarafından gerçekleştirilmiştir. Bell, hızlı ve belirli zaman aralıklarında tekrarlanan ve astrofizikçilere bir o kadar da garip gelen radyo sinyalleri almıştı. Bu düzenli sinyaller o kadar alışılmamıştı ki bir uygarlığa ait olabileceği düşünülmüştü. Bu aralıklar o kadar kesindi ki Dünya’daki tüm atom saatlerinden daha doğru, doğal bir saat gibiydi adeta. Daha sonra yapılan incelemeler sonucunda bu sinyallerin kaynağının nötron yıldızları olduğu ortaya çıktı.
Tüm atarcalar birer nötron yıldızıdır fakat tersini söylemek bir nedenden ötürü mümkün değildir; atarcanın iki önemli özelliği-hızlı dönüşü ve güçlü manyetik alanı- nötron yıldızlarında zamanla azalır. Yani dönüş hızı azalırken manyetik alanı da zayıflar. Atarcalar birkaç yolla ışıma yapabilir. Bunlar;
1-X-ışını atarcaları bir nötron yıldızının başka bir gök cismiyle ikili sistem oluşturmasıyla ortaya çıkar. Bu atarcanın çifti, başka bir yıldız, bir gezegen, beyaz cüce hatta başka bir atarca olabilir. Çiftlerden birisi ömrünün sonuna yaklaştığında dış kabuk şişmeye ve bu eşten nötron yıldızına madde akmaya başlar. Madde akışıyla beraber nötron yıldızı kendi etrafında çok hızlı dönmeye başlayarak X-ışını atarcasını oluşturur. Bütün madde atarcaya geçip bittiği zaman atarcanın dönme periyodu artmaya başlar. Enerjisini tüketen atarcanın tamamen durması yani ölmesi milyarlarca yıl sürebilir.
2-Yörüngesel atarcaların ışıma kaynağı ise adından anlaşılacağı üzere kendi etrafında dönerken sağladığı enerjidir. Bu tür atarcalar dönme enerjileri bittiğinde ölürler.
3-Magnetar olarak da adlandırılan diğer bir atarca ise ışınım kaynağı çok güçlü olan atarcalardır. Bir magnetar normal bir nötron yıldızından bin kat güçlü manyetik alana sahiptir. Bu güçlü manyetik alan atarcaya bir direnç oluşturur ve zamanla yavaşlamasına sebep olur. Hızındaki azalmayla beraber manyetik alanı da zayıflar. Manyetik alanın belirli bir seviye altına düşmesiyle ölürler.
Sonuç olarak büyük kütleli yıldızların süpernova patlamaları sonucunda nötron yıldızları oluşur. Nötron yıldızlarının manyetik alan kuvveti ve dönüş hızlarını korumasıyla atarcalar ortaya çıkar. Her atarcanın kendine özgü periyodu bulunur. Işınım kaynakları farklı olsa da genelde x-ışını ve radyo dalgaları yayarlar. Çok hızlı döndükleri için yaydıkları ışın bize periyodik olarak yansır, bu da atarcaların ışınlarını deniz feneri ışığı gibi görmemize yol açar.
Merak edenler için atarca seslerini burada dinlemek mümkün.
Gökada veya Galaksi; yıldızlar, yıldızlararası gaz ve toz, plazma ve (büyük ihtimalle de) görülmeyen karanlık maddeden oluşan dev sistemlere verilen isimdir. Tipik bir gökada 10 milyondan bir trilyona kadar yıldız barındırır. Bu yıldızların hepsi aynı çekim merkezini çevreleyen yörüngelerde dönerler. Gökadalar şekillerine göre dört ana grupta toplanırlar:
Elips / Disk Biçimli Gökadalar: Genellikle rastgele hareketler yapan yaşlı yıldızlardan oluşan bu tür gökadalar, sarı-kırmızı bir renkte gözükürler. Yeni yıldız oluşturabilecek gaz ve tozunu yitirmiş olan bu gökadaların evrendeki gökadaların çoğunluğunu oluşturduğu düşünülüyor. Merkezinden dışına doğru gidildikçe parlaklığı sarmal gökadalara oranla çok daha fazla azalır.
Sarmal Gökadalar: Samanyolu Galaksisi’nin de üyesi olduğu bu tür; düz bir disk, yıldızlar ve tozlardan oluşan spiral kollar, ve merkezinde ”şişkinlik” bulundurur. Bu yapı nispeten daha genç yıldızlardan oluşur(eliptik gökadalara oranla). Bazı sarmal gökadaların merkezinde dev karadeliklerin etkisi gözlemlenebilirken, bazılarının merkezi bölgesi de bar şeklindedir.
Merceksi Gökadalar: Şekil bakımından sarmal ve eliptik gökadalar arasında kalan bu gökada türü sahip olduğu maddenin büyük bir kısmını kaybetmiş; genelde yaşlı yıldızlardan ve bir miktar toz bulutundan oluşmaktadır.
Düzensiz Gökadalar: İsminden de anlaşılacağı üzere belirli bir şekle sahip olmayan bu gökadalara bakıldığında genelde bir kaos durumu görülür.
Gökyüzüne baktığınızda diğer kısımlarına nazaran çok daha fazla yıldız içeren şeritsel bölge, bizim gökadamız Samanyolu’ndan başka bir şey değildir. Ancak görülebilen, Samanyolu’nu meydana getiren kollarından sadece birisidir.
Gökadalar genellikle, gökada kümeleri olarak gruplanmışlardır. Bu kümeler içinde en çok bilineni Başak Takım Yıldızı içindeki Virgo kümesidir.
Galaksimizin komşusu olan Andromeda, bize en yakın gökada olmakla birlikte, gökyüzünde çıplak gözle görülebilen en uzak gök cismidir (2,2milyon ışık yılı). Biçim bakımından bizim gökadamıza çok benzeyen Andromeda’nın boyutları Samanyolu’nun 1,5 katı kadardır. Yaklaşık olarak 300 milyar yıldız içerir.
Gökadaların uzayda rastgele dağıldıklarını ileri süren teoriler, modern araçlarla yapılan gözlemler neticesinde önemini kaybetmiş, hepsinin belli bir düzen içinde yer aldıkları, ayrıca gökadaları teşkil eden yıldızlar ve diğer gök cisimlerinin de hepsinin belli bir kanun içinde hareket ettikleri, içinde bulunduğumuz Samanyolu gökadası gibi milyonlarca gökadanın var olduğu, bütün bunların saniyede binlerce kilometre hızla hareket ettikleri anlaşılmıştır. Gelişmiş uzay araçlarıyla yapılan gözlemlerde, gökadaların spektrumunda görülen kırmızıya kayma, bu kaçışın devam ettiğini göstermektedir.
Astrofizikçilerin yapmış olduğu araştırmalarda gökadaların milyarlarca yıllarla ölçülen ömürleri içinde birbirleriyle çarpışabildikleri belirtilmiştir. Çekim güçlerinin gökadaları birbirine yaklaştırması neticesinde meydana gelen bu dev kozmik olay sonucunda spiral gökadaların eliptik gökadalara dönüştüğü ileri sürülmektedir.
Takımyıldız, gökyüzünün (veya gök küresinin) bölündüğü 44 güney yarımkürede 44 kuzey yarımkürede olmak üzere toplam 88 alandan her birine verilen isimdir. Bir takımyıldızdaki her yıldız Dünya’dan farklı uzaklıklara sahiptir, hepsinin tek bir düzlemdeymiş gibi görünmesinin sebebi onlara çok çok uzaktan bakmamızdır.
Takımyıldızlardan bazıları yıl boyunca görünse de birçoğu sezonluktur ve sadece yılın belli dönemleri gözlemlenebilir.
Birçok takımyıldızının adı antik Yunan’a, Orta Doğu’ya ve Roma’ya dayanır. Takımyıldızlar, o dönemlerin Tanrıları, Tanrıçaları, hayvanları ve mitolojik objeleri olmuşlardır. Çağrıştırdıkları şekiller isimlendirilmelerindeki en büyük role sahiptir. Bir avcıyı andıran Avcı Takımyıldızı(Orion) veya bir aslanı çağrıştıran Aslan Takımyıldızı(Leo) buna örnektir. Gökyüzünde açık gözle gözlemlenebilir 48 antik takımyıldız vardır.
Günümüzde Uluslararası Astronomi Birliğince geçerli 88 takımyıldızı vardır. Bunlar:
Andromeda | Pompa | Cennetkuşu | Kova | Kartal | Sunak | Koç | Arabacı | Çoban | Çelikkalem | Zürafa | Yengeç | Av Köpekleri | Büyük Köpek | Küçük Köpek | Oğlak | Karina | Koltuk | Erboğa | Kral | Balina | Bukalemun | Pergel | Güvercin | Berenis’in Saçı | Güneytacı | Kuzeytacı | Karga | Kupa | Güneyhaçı | Kuğu | Yunus | Kılıçbalığı | Ejderha | Tay | Irmak | Ocak | İkizler | Turna | Herkül | Saat | Suyılanı | Küçüksuyılanı | Hintli | Kertenkele | Aslan | Küçük Aslan | Tavşan | Terazi | Kurt | Vaşak | Çalgı | Masa | Mikroskop | Tekboynuz | Sinek | Cetvel | Sekizlik | Yılancı | Avcı | Tavus | Kanatlıat | Kahraman | Anka | Ressam | Balık | Güneybalığı | Pupa | Kumpas | Ağcık | Okçuk | Yay | Akrep | Heykeltraş | Kalkan | Yılan | Altılık | Boğa | Dürbün | Üçgen | Güney Üçgeni | Tukan | Büyük Ayı | Küçük Ayı | Yelken | Başak | Uçanbalık | Tilkicik
Andromeda
Andromeda, modern 88 takımyıldızdan biridir. Ayrıca, Batlamyus’un 48 takımyıldızdan oluşan listesinde de geçer. Adını yunan mitolojisindeki bir karakter olan prenses Andromeda’dan alır. Kanatlı At (Pegasus) takımyıldızının yanında bir kuzey yarımküre takımyıldızıdır. Kimi zaman Zincirli Prenses olarak da anılır. Merkezinde bulunan Adromeda Gökadası (M31) çıplak bir gözün görebileceği en uzak objedir, Dünya’dan 2.5 miyar yıl uzaklıktadır.
Orion (Avcı)
Gökyüzünde hem güney hem de kuzey yarıküresinde bulunan ve bu sayede tüm dünyadan görülebilinen, oldukça parlak yıldızlardan oluşan dolayısıyla da kolay bulunabilinen takım yıldız. Avcının belirgin şekli dört belirgin yıldızdan oluşan boyu eninin iki katı kadar olan bir dörtgen ve bu dörtgenin merkezinde çapraz durmakta olan üç ayrı yıldızdır. Betelgeuse avcının sağ omzuna, Bellatrix sol omzuna, Rigel sol ayağına ve Saif de sağ ayağına denk gelir. Ortadaki üç çapraz yıldız (alttan üste sırayla Alnitak,Alnilam ve Mintaka) avcının kemerini (Orion kuşağı olarak da bilinir) oluşturur. Kuşağın altında bulunan M42 bulutsusu (Orion Nebulası) avcının kılıcıdır. Heka adındaki avcının başını simgeleyen kısım aslında daha sönük üç yıldızdan meydana gelir. Betelgeuse’un üstündeki yıldızlar avcının sağ kolunu, Bellattrix’den ötede olan yıldızlar da avcının kalkanını oluşturur.
Avcı kış ayları boyunca Türkiye’den rahatlıkla gözlemlenebilir. Avcıyı gözlemlemek isteyenler güney ufkuna bakmalıdır. Avcının yeri bulunulan aya göre güneybatı ile güneydoğu arasında değişir. Bünyesinde gökyüzünün en parlak yıldızlarından Rigel (7. en parlak yıldız) ve Betelgeuse (10. en parlak yıldız)’ ün bulunması ve etrafındaki takımyıldızların solukluğu Avcının kolaylıkla gözlemlenebilmesini sağlar. Avcının komşuları Boğa, İkizler, Eranus nehri, Tavşan takımyıldızlarıdır.
Aquila (Kartal) Takımyıldızı
Aquila, modern 88 takım yıldızdan biridir. Görünüm olarak Samanyolu üzerinde yer alır. İlk kez Yunan astronom Ptolemy tarafından 2.yüzyılda kataloglanmıştır. En parlak yıldızı Altair’dir ve bu yıldız yaz üçgeni oluşturan üç yıldızdan birdir. Yaz üçgeninin diğer yıldızları Vega Lir (Çalgı) Takımyıldızında, Deneb ise Cygnus (Kuğu) Takımyıldızında bulunur.
Lyra (lir [Çalgı]) Takımyıldızı
Lir Takımyıldızı bir çok takımyıldıza nazaran gökyüzünde oldukça küçük bir alan kaplar. Lir Takımyıldızının en parlak yıldızı ve gökyüzündeki en parlak 5.yıldız olan Vega’dır. Bu yıldızın kadir değeri + 0,03 dür ve diğer yıldızların parlaklıklarını karşılaştırmada referans olarak alınabilir. Vega yaz üçgeninin üç yıldızından biridir.
Cygnus (Kuğu) Takımyıldızı
Cygnus (Kuğu) modern 88 takımyıldızdan biridir. Bir çok parlak yıldız içerir. Bu yıldızlardan en önemlisi ve en parlak olanı Deneb ‘dir ve yaz üçgeninin üç yıldızından biridir. Kuğu takımyıldızı görünüm bakımından Samanyolu üzerinde güneye doğru uçan bir kuşu andırır.
Ursa Major (Büyük Ayı) Takımyıldızı
Ursa Major özellikle kuzey yarım kürenin büyük bir bölümünde yıl boyunca görülebilir. Oldukça parlak yıldızlardan oluşmuştur. Belirgin kepçe biçimi sayesinde diğer takımyıldızlardan ayırması oldukça kolaydır. Kepçenin sapındaki üç parlak yıldızdan ortadaki; ünlü bir çift yıldız olan Mizar’dır ve ona yakın görünümde daha sönük olan başka bir çift yıldız; Alcor yer alır. Ursa Major ‘ün en parlak yıldızdarı Dubhe ve Merak’tır. Bu iki yıldız cezvenin ucunda, sap kısmına en uzak görünümde bulunurlar. Bu yıldızların aralarındaki mesafeyi referans alarak Merak-Dubhe yönünde 5 birim gittiğimizde Kutup Yıldızı’na (Polaris) ulaşırız. Kutup Yıldızı ise Ursa Minor (Küçük Ayı) Takımyıldızında yer alır. Ayrıca kepçenin sap kısmını oluşturan üç yıldızın çizdiği kavisi takip ederek Bootes (Çoban) takımyıldızının en parlak yıldızı olan Arcturus’a ulaşabiliriz. Bu özellikleri ile Ursa Major, gökyüzünde diğer takımyıldızları bulurken oldukça kolaylık sağlar.
Ursa Minor (Küçük Ayı) Takımyıldızı
Küçük Ayı Takımyıldızı da büyük kardeşi gibi kuzey yarım kürenin çok büyük bir kısmında, yıl boyunca görülebilir. Şekli Büyük Ayı gibi kepçeyi andırır. Sap kısmının en son yıldızı Kuzey Yıldızı olarak bilinen Polaris’tir. Bu yıldız sayesinde açık bir havada, yönümüzü kolayca belirleyebiliriz.
Scorpius (Akrep) Takımyıldızı
Bu takımyıldız Scorpio olarak da bilinir. Batıda Libra (Terazi), doğuda ise Sagittairus (Yay) takımyıldızları arasında yer alır. Birçok parlak yıldız barındırır. Bunların en önemlisi ve en parlağı Antares, akrebin kalbi olarak bilinir. Antares ömrünün sonlarına gelmiş bir kızıl devdir. Astronomik olarak yakın bir gelecekte bir süper novayla yaşamını noktalayacaktır.
Sagittarius (Yay) Takımyıldızı
Sagittarius (Yay) Takımyıldızı: Sembol olarak okunu Scorpius (Akrep) Takımyıldızına doğrultmuş bir yay olarak tasvir edilmiştir. Ophiuchus (Yılancı) ve Capricornus (Oğlak) Takımyıldızları arasında yer alır.
Gökyüzünü süsleyen devasa yıldızlar her zaman onları gördüğümüz gibi değillerdi ve öyle de kalmayacaklar. Yıldızlar da bizim gibi doğup büyüyor ve sonunda kaçınılmaz sonlarından birini yaşıyorlar. Hep birlikte yıldızların bu destansı hikayelerini dinlemek için 30 Mart 2017 Salı günü, saat 18:30’da Fizik Bölümü 3. katta bulunan Cavid Erginsoy Seminer Salonu’nda görüşmek üzere.
”Bir daha parlamak için, bizlere yaşam vermek için, belki bir gün daha aydınlık parlamak için, onlar karanlık örtüyü üzerlerine çektiler…”
Stephen Pumfrey tarafından kaleme alınan bu yazının İngilizce aslına buradan ulaşabilirsiniz.
Arada bir bilimsel makaleler sansasyon yaratabiliyor, ki yakın zamandaki manşetlere bakılırsa gene öyle olmuş gibi görünüyor. The Sunday Times [Birleşik Krallık’ta yayımlanan bir pazar gazetesi] “Ay gezegen olduğu iddiasıyla yükseliyor” derken Mail Online ise [Birleşik Krallık’ta yayımlanan Daily Mail gazetesinin web sayfası] “Bu k-A(Y)-çıklık mı?” [Sitede kullanılan kelime “lunarcy” olup, kaçıklık anlamına gelen “lunacy” kelimesi ile Ay/Ay’a ait anlamına gelen “lunar” kelimesinin birleştirilmesiyle oluşturulan bir kelime oyunudur.] diye sordu. Bu haber yazıları, mütevazı bir makaleye karşılık veren nicesinin sadece birkaçı. “Jeofiziksel Bir Gezegen Tanımı” (“A Geophysical Planet Definition”) makalesi, bir nesneyi gezegen yapan kriterlerin elden geçirilmesini öneriyor. Öyle ki, makale Ay’ın, Plüton’un ve Güneş Sistemi’ndeki başka birkaç nesnenin gezegenlik statüsüne yükseltilmesi gerektiğini savunuyor.
Planetary and Lunar Science akademik dergisinde yayınlanan makale, Alan Stern’i de içeren bir ekip tarafından yazıldı. Stern, Temmuz 2015’te Plüton’a ses getiren bir yakın geçiş yapan NASA’nın Yeni Ufuklar (New Horizons) görevi ile meşhur. Makale birazcık teknik detay içeriyor; fakat esasen, bir nesneyi gezegen yapan kıstasın sadece Güneş’in etrafında dolanıp dolanmaması değil, o nesnenin jeofiziksel özelliklerinin olması gerektiğini savunuyor.
Elbette, Stern’in bu konuda söyleyecek çok sözü var. Mesela, Uluslararası Astronomi Birliği’nin (IAU) 2006’da—Yeni Ufuklar’ın Plüton’a doğru fırlatılmasının üzerinden henüz yedi ay geçmişken—Plüton’u gezegenlikten çıkarmasına hala hiddetli. Gönderdiği uzay aracı hedefine ulaşana kadar Plüton zavallı bir “plütoid”e, bir “Neptün ötesi cüce gezegen”e dönmüş durumdaydı. İşte Stern bu makalesinde misilleme yapıyor. Kendisi, “Madem Plüton artık bir gezegen değil, Yeni Ufuklar’ı oraya niye gönderdiniz ki?” diye soran insanlardan çoktan bıkmış durumda.
Geçmişten alınan dersler
Ay’ın Dünya’nın uydusu olduğu fikrini o kadar kanıksamışız ki, onun aslında bir gezegen olabileceği fikri hakikaten sarsıcı. Fakat Eski Yunanlar da, Orta Çağ astronomları da Ay’ı gayet bir gezegen olarak sınıflandırıyordu.
Antik çağ gözlemcileri geceler geçse de yıldızların göreli konumlarını değiştirmediklerinin farkındaydı: Aslan veya İkizler takımyıldızlarını onlar da tıpkı bizim gördüğümüz şekilde görüyorlardı. [Aslında yıldızlar da on binlerce yıllık zaman süreçlerinde gökyüzünde hareket ediyor, fakat yazının keşfinden beri gökyüzündeki yıldızların kayda değer bir miktarda değişmediği muhakkak, o yüzden bunu göz ardı edebiliriz.] Bu gözlemciler, yedi göksel nesnenin konumlarını yavaşça değiştirdiklerini, gökte doğudan batıya doğru gezindiklerini de fark ettiler. Bunların en önemlisi kuşkusuz Güneş’ti. Güneş’in yıl boyunca burçlar kuşağının 12 burcundan geçerek çizdiği çembere astronomlar tutulum çemberi/düzlemi (veya “ekliptik”) adını veriyorlar (bknz: aşağıdaki görsel). Güneş (tabii ki biz artık onun yerine Dünya demeyi tercih ediyoruz) yılda bir tur atarken Satürn bu düzlemde 30 yılda bir tur atıyordu, Jüpiter 12 yılda, Mars ise iki yılda bir. Ay gezegeni ise bir turunu 1/12 yılda, yani bir ayda tamamlıyordu. Aslında “gezegen” kelimesi rahatça görülebileceği gibi “gezmek” fiilinden türetilmiş; aynı şekilde İngilizce’deki “planet” kelimesi de “gezgin” anlamına gelen Yunanca “πλανήτης”ten (“planítis”; Latince ise “planeta”) türetilmiş.
Güneş ve Dünya’yı gösteren bir tutulum çemberi animasyonu. Eser sahibi: Tfr000/Wikipedia, CC BY-SA
Ay’a ise özel bir ilgi gösteriliyordu. Ay’ın yakınlığı, onu çıplak gözle görünür yapıları olan (“Ay’daki adam yüzü” gibi) tek “gezegen” yapıyordu. Aristo’nun (MÖ 384-322) Ay’ın fiziği hakkında soruları vardı: Mesela neden Ay’ın hep aynı yüzü görünüyordu da arka tarafını hiç göremiyorduk? Aslında bu gayet güzel bir soru; astronomlar bunu artık gezegenler ve büyük uydular arasındaki kütleçekimsel kuvvetlerin bir sonucu olarak açıklıyor, ve buna “kütleçekim kilidi” adını veriyorlar.
Aristo ise bambaşka bir sonuca varmıştı. O, Ay’ın özünde dönme veya hareket etme yetisi olmadığını düşünüyordu. Hatta Aristo bunun bütün gezegenler için geçerli olduğunu düşünüyordu. “Gezegenler,” diyordu, “sırf bir çemberin üzerinde taşındığı için hareket eder”. İşte bu fikir, gezegenler ve yıldızların iç içe geçmiş semavi küreler tarafından döndürüldüğünü varsayan ayrıntılı Orta Çağ evrenbiliminin temelini oluşturdu. Eğer Ay’ımız kütleçekimsel olarak kilitlenmiş olmasaydı, astronominin gelişimi çok farklı bir yol izlemiş olabilirdi.
Batlamyusçu Dünya merkezli evren modelinin Portekizli evrenbilimci ve haritacı Bartolomeu Velho tarafından yapılmış bir çizimi, 1568. Wikipedia
Peki atalarımızın Ay’ı da diğer gezegenler arasına eklemesinin münasip bir sebebi var mıydı? Bence vardı, fakat bu biraz da tuhaf bir gökbilimsel rastlantının sonucunda oldu. Hemen hemen tüm büyük uydular, gezegeninin ekvator düzleminin üzerinde veya ona çok yakın bir şekilde dolanır, bizim Ay’ımız hariç: Ay’ın yörüngesinin ekvator düzlemimize olan eğikliği 28 dereceye kadar çıkıyor. Gelgelelim Dünya’nın ekvator düzlemi de tutulum düzlemine göre 23,5 derece eğik. Bu iki durumun alışılmadık birleşiminin sonucunda da Ay tutulum düzleminin üzerinde, ondan en fazla 5 derece uzaklaşacak şekilde hareket ediyormuş gibi görünüyor. Ay da diğer gezegenler gibi tutulum düzleminin/çemberinin üzerinde dolanmasa, antik çağ astronomları Ay’a tipik bir gezegenmiş gibi davranmayabilirdi.
Geçmek bilmeyen ikirciklilik?
1543’te yayımlanan Kopernik’in Güneş merkezli astronomisi ile Ay, tipik bir gezegen olma ünvanını kaptırdı. Kopernik’e gelen eleştirilerin dikkat çektiği üzere, Ay’ın—şahsına münhasır bir biçimde—yörüngesinin ortasında Güneş değil Dünya vardı. Şimdiyse Ay’a Dünya’nın “uydu”su diyoruz, “tabi olma, ardından gitme, takip etme, tapma”* anlamına da gelen “uymak” fiilinden türeterek. İngilizcede ise “satellite” sözcüğü “hizmetçi, kul” anlamına gelen “satelles”ten türemiş. Ay’ın itibar kaybetmesinin dahası da var. Galileo 1610’da teleskobunu Jüpiter’e doğrulttuğunda dört tane ay keşfetti. Kopernik destekçileri için iyi haber, ama Ay için değil… Ay artık “AY” değil, bilinen beş aydan (yani, uydudan) biriydi, kaldı ki bu sayı günümüze kadar hızla artıp tam 182’ye ulaştı.
Galileo’nun ay eskizleri. Wellcome images/Wikipedia, CC BY-SA
Görünüşe göre dünyada pek de yeni bir şey yok. Galileo’nun zamanında da Ay, Ay’ı Dünya’daki gibi kara ve denizleri olan bir gökcismi olarak gören yeni evrenbilimciler ile, Ay’ın düpdüzgün, mükemmel bir semavi nesne olduğuna ısrar eden eski astronomların kapışma konusuydu.
Yeni gezegen tanımı ile Alan Stern bu kavgayı yeniden alevlendirdi. Makalesine göre, astronomlar “Uluslararası Astronomi Birliği’nin tanımını tamamen faydalı bulabilir” fakat “kendisinin jeofiziksel tanımları gezegen jeolojisi bilimcileri, eğitmenleri ve öğrencileri için daha kullanışlı”. Veya, Stern’in 2015’te dobra dobra söylediği gibi: “Bir gezegen söz konusu olduğunda, konu hakkında bilgi sahibi olan gezegen bilimciler varken astronomları niye dinleyesiniz ki?” Sonuç olarak Stern’in ekibi biliyor ki—yani en azından öyle olacağını düşünüyorlar—Ay yeniden bir gezegen olarak kabul edilmek zorunda. Tabii ki en sonunda ne olacağı, bu tür konularda karar verme yetkisine sahip olan Uluslararası Astronomi Birliği’ne kalmış durumda.
Kafamızı kaldırdık ve gökyüzüne baktık. Görülmeye değer o kadar güzel şey vardı ki, gözümüzü alamadık. Bizler bir araya geldik çünkü, bilinç kazanmanın yanında, insanlara gökyüzü hakkında bilinç kazandırmak da istiyoruz. Bilgilerimizi birbirimizle paylaşmak için merak ettiğimiz konuları tartışıyoruz, kimi zamanlar öğrendiğimiz bilgileri diğer arkadaşlarımız ile paylaşmak için sunumlar ve atölyeler hazırlıyoruz. Hele bir de gökyüzü açık ise toplantı sonraları alıyoruz gözlem araçlarımızı, gözleme çıkıyoruz.
Fizik çimlerinde veya ellerimizde dürbün, orman yolunda ışık kirliliğinden uzaklaşırken sık sık görebilirsiniz biz amatör astronomları. Bazen bize kampüs dar gelir, hep beraber şehir dışına gözlem yapmaya gideriz.
1986’da kurulmuş bir topluluğuz ve her yıl gökyüzüne meraklı, bilimi seven yıldız çocukları ile birlikte daha da büyüyoruz. Bizler ilk dönemi dolu dolu geçirdik. İkinci dönem için de yeni etkinliklerimiz, planlarımız bulunmakta ama öncesinde yeni yıldız çocukları ile bir araya gelmeliyiz. Sizlerle tanışmak için 2 Mart Perşembe günü saat 18:00’de, Fizik Bölümü’nde bulunan Cavid Erginsoy Seminer Salonu’nda olacağız. Görüşmek üzere…
”Muhteşem bir şey, bir yerlerde keşfedilmeyi bekliyor.” — Carl Sagan
Birkaç gündür devam eden açık ve ılık havayı da fırsat bilerek geçen çarşamba günü dönemin ilk teleskoplu gözlemini yaptık. Amacımız aslında yeni ve hevesli birkaç üyemize teleskop kurulumunu öğretmekti, ama bir teleskop kurulduktan sonra devamında gözlem de yapılır tabii ki!
Gerçi teleskop gözlemimiz Venüs ve Vesta’dan ibaretti, ama bu iki nesnenin ayrı ayrı anlamı var. Nasıl mı?
Tüm kış boyunca göz alıcı parlaklığıyla akşamları gökyüzünü süsleyen Venüs, bir ay içinde akşam göğünü apar topar terk edecek. Dünya’ya iyice yaklaşarak hilal evresini alan ve bu hafta gökteki en parlak haline erişmiş Venüs’ü gözlemlemek için bu aralar en uygun zamandı. Haliyle Fizik bölümü otoparkında teleskopu kurduktan sonra çevirdiğimiz ilk hedef Venüs oldu. Zaten Ankara’da yaşadığımız ışık kirliliği düşünülürse fazla seçeneğimiz de yoktu… Teleskobun göz merceğinden Venüs, Ay’ı çıplak gözle gördüğümüzden çok daha küçük görünse de o pasparlak beyaz hilalciği görünce heyecanlandık, nutkumuz tutuldu, adeta gözlerimiz kamaştı… Çoğumuz teleskoptan Venüs’ün hilal halini ilk defa görmüştü, heyecanın bir kısmı da ondan.
Teleskobumuzun bulucu dürbünü ayarlı olmadığından ve bilgisayarlı motoru çalıştırmadığımızdan Venüs’ü bulmak zaman aldı: Elle yordamla teleskobu bir nesneye doğrultmak, denizde kepçeyle balık avına çıkmak gibi bir şey, o “balık” çılgınca ışıldayan Venüs bile olsa. Bir kısmımız teleskobu Venüs’e yöneltmekle uğraşırken bir kısmımız da az sonra geçecek uydulara, takımyıldızlara, topluluğun dürbünüyle bulabileceğimiz nesnelere kafa yoruyordu. Bir anda fark ettik ki Vesta’yı dürbünle görmemiz mümkün, hatta kendisi diğer yıldızların yardımıyla hemencecik bulunabilecek bir konumda. Tabii bu arada “Vesta da neymiş???” sorusuna bir yanıt vermek lazım sanırım: Vesta, 1807 yılında keşfedilen ilk asteroidlerden, ortalama 525 kilometrelik çapıyla Mars ile Jüpiter arasında dolanan kocaman bir patates! Kendisi keşfedilen dördüncü asteroid olmasına karşın Dünya’dan görülebilen en parlak asteroid, doğru yere bakarsanız orta boy bir dürbünle bile seçilebilmekte.
Vesta, dürbün ve teleskopla bulunmak için çok kolay bir konumdaydı.
7,0 parlaklığındaki Vesta’yı komşu yıldızların yardımıyla bulmak zor olmadı, cılız da olsa kendisini seçmek mümkündü. Bu da gözlem ekibi olarak yaptığımız ilk asteroid gözlemi oldu. Dahası, Venüs’ten sonra hodri meydan dedik; teleskopu yukarıya, Vesta’ya çevirmeye yeltendik. Pollux’u bulmak zor olmasa gerekti, biraz zaman aldı ama sonunda turuncumsu parlak yıldız, göz merceğinde bize bakıyordu. Ondan sonrası da bulmaca gibi: Dizüstü bilgisayardaki Stellarium’un da yardımıyla Pollux’tan başlayıp cılız yıldızlardan atlaya atlaya Vesta’yı bulmayı başardık! Dürbüne kıyasla daha az cılız bir noktadan ibaretti gerçi, ama 250 milyon kilometre ötedeki kocaman bir patatese baktığımız düşünülürse elbet bu da bir başarıydı…
Gözlemimiz bu iki gökcismiyle sınırlı kalmadı elbette. Işık kirliliğinin izin verdiği kadarıyla takımyıldızları tekrar ettik; dürbünle Ülker’i, Avcı Bulutsusu’nu, Sirius’un altındaki M41 açık yıldız kümesini inceledik; bir iki de uydu geçişi yakaladık. Umuyoruz ki bu dönem hava koşulları da el verdikçe bunun gibi daha fazla gözlem yapacağız—ne de olsa yukarıda keşfedilmeyi bekleyen bir yığın şey var!