1 Mart 2025 22.00, 15 Mart 2025 21.00, 30 Mart 2025 20.00 tarihlerinde ortalama gökyüzü görüntüsü. (Stellarium)
Oldukça soğuk geçen bir şubat ayının ardından havaların yavaş yavaş ısınmasıyla gözlemlere akın edecek gökbilim meraklılarını neler bekliyor?
1 Mart 2025 22.00, 15 Mart 2025 21.00, 30 Mart 2025 20.00 tarihlerinde gökyüzü. (Stellarium)
Güneybatı yönünde seyir zevki oldukça yüksek olan kış altıgenine Mars ve Jüpiter’in eşlik etmesiyle izlemeye doyulamayacak bir gökyüzü gözlemlenebilecek.
1 Mart 2025 19.30’da gökyüzü
Kış boyunca oldukça geç vakitlerde battığına şahit olduğumuz Venüs, Mart ayı boyunca daha erken batarak gözlemlenmesi gitgide zor bir hale gelecek. Uzun bir süre yakalaması şu günlerde olduğu kadar kolay olmayacak batı ufku üzerindeki Venüs’ü gözlemlemenizi tavsiye ediyoruz.
Tarih 28 Ağustos 1859, henüz 1860 solar maksimumuna birkaç ay varken Güneşimizin üzerinde büyük miktarda Güneş lekesi belirmeye başlar. Bu lekelerin görünmesinin ardından 29 Ağustos’ta Kuzey Yarım Kürede New England, Güney Yarım Kürede ise Queensland’den bile gözlemlenebilen auroralar ortaya çıkar. Bu güneş lekeleri Richard Carrington tarafından 1 Eylül’de detaylı çizimler olarak kayda alınır.
1 Eylül 1859, saat yaklaşık sabah 11.00’de Richard Carrington ve Richard Hodgson birbirlerinden bağımsız olarak tarihte ilk defa bir güneş patlamasını gözlemlediler. Gerçekleşen koronal kütle atımından saçılan parçacıklar normalde Dünya’ya günler içerisinde ulaşırken bu sefer 17.6 saatte Dünyamıza vardı.
Bu olay şu anda Carrington Olayı olarak isimlendirilen, insanlık tarihinde kayda geçirilmiş en büyük jeomanyetik fırtınaya yol açtı.
Bu jeomanyetik fırtınadan kaynaklanan auroralar Dünya’nın büyük bir kısmında şahane bir ışık şovu olarak gözlemlendi. Auroraların Rocky Dağları çevresindeki altın madencilerini uyandırıp sabah olduğunu düşündükleri için kahvaltı hazırlamaya başlatacak kadar parlak olduğu söyleniyor. Aynı zamanda Kuzeydoğu Amerika’da yaşayan insanların aurora ışığı altında gazete okuyabildiği anlatılır.
Ancak maalesef ortaya çıkan jeomanyetik fırtına sadece güzel görüntüler ortaya çıkarmakla kalmamıştır. 1859’un teknolojisinde bile jeomanyetik etkili akım sonucu özellikle telgraf hatlarında önemli sıkıntılar yaşanmış, telgraf direkleri etrafa kıvılcım saçmış ve bazı telgraf operatörleri sistemleri tarafından çarpılmıştır. Science Direct’te yayınlanan bir makalede yer alan telgraf raporunda bu akımların gücünü anlamaya yarayacak bir konuşma geçmekte.
Boston operatörü (Portland operatörüne): Lütfen bataryanızı hattan [telgraf hattından] 15 dakikalığına tamamen kesiniz.
Portland operatörü: Yapacağım. Şu anda bağlantı kesik.
Boston: Benimki de kopuk, şu anda aurora kaynaklı akım ile çalışıyoruz. İletim sana nasıl geliyor?
Portland: Bataryalı halinden daha iyi. Akım yavaş yavaş gidip geliyor.
Boston: Benim akımım bazen çok güçlü, Aurora bataryalarımızı bazen nötralize edip bazen çoğalttığı için akım röle mıknatıslarımıza fazla gelebiliyor. Bataryalar olmadan daha iyi çalışabiliriz. Bu olaydan etkilenirken bataryasız çalışmamız lazım gibi.
Portland: Tamamdır. İşimize devam edeyim mi?
Boston: Evet. Devam et.
Bu konuşma bundan sonra yaklaşık 2 saat boyunca devam etmiştir. Bu ve yaşanan bunun gibi olayları makalenin kendisinden araştırabilirsiniz.
Carrington olayı her ne kadar dinlemesi ve anlatması etkileyici hikayeler yaratmış olsa da Dünya’daki manyetik olaylar ve Güneş arasındaki bağlantıyı kuran, Dünya’daki hayatın kaynağı Güneş’in aynı zamanda bu hayata karşı oluşturabileceği tehlikeyi gözler önüne seren, şimdiki ve gelecekteki insanlığın kulağına küpe etmesi gereken bir olaydır.
19. yüzyıldan bu yana gelişen teknoloji ve elektriğe artan bağlılık sebebiyle bu tarz olaylar insanlık için çok daha büyük bir tehlike oluştursa da aynı teknoloji güneş patlamalarını daha iyi anlayabilmek ve jeomanyetik fırtınaları önceden tahmin edip gerekli önlemlerin alınabilmesini sağlamakta kullanılıyor. Solar Dynamics Orbiter (SOHO), Parker Solar Probe ve ESA’nın Solar Orbiter’ı gibi araçlar sürekli Güneş’i gözlemleyerek Güneş lekeleri, Güneş patlamaları ve koronal kütle atımlarının altında yatan mekanizmayı anlayabilmemizi sağlayan araçlardan sadece bazıları.
Takımyıldızlar ile sıklıkla karıştırılan asterizm*, aynı takımyıldızlar gibi çıplak gözle görülebilen yıldız şekilleridir. Genellikle asterizmi oluşturan yıldızlar arasında herhangi bir fiziksel bağlılık yok iken; aralarında oldukça uzak mesafeler vardır. Büyük Kepçenin, Büyük Ayı takımyıldızının bir parçası olması gibi bir takımyıldızının içinde bulunabilirken; Yaz Üçgeni gibi farklı takımyıldızlarının parçası olan yıldızlar tarafından oluşturulabilir.
YAZ ÜÇGENİ:
Kuzey göksel yarımkürede bulunan bir asterizmdir. Kuzey yarımküreden yaz aylarında görünebilir durumdayken, güney yarımkürede kış aylarında ters bir biçimde görülebilir. Yaz Üçgeni Vega, Deneb ve Altair yıldızlarından oluşur ve bu yıldızlar sırası ile Çalgı, Kuğu ve Kartal takımyıldızlarında bulunur. Her biri bulunduğu takımyıldızındaki en parlak yıldızdır. En parlakları olan Vega Yaz Üçgeni’nin tepesinde bulunur. Güneş’ten yaklaşık 50 kat daha parlak ve Güneş’e 25.3 ışık yılı uzaklıktadır. Aynı zamanda gökyüzündeki en parlak 5. yıldızdır. Yaz Üçgeni’nin 2. parlak yıldızı olan Altair ise gökyüzündeki en parlak 12. yıldız olup Güneş’ten 16.7 ışık yılı uzaklıkta bulunmaktadır. Vega’nın sağ alt tarafında görülebilmektedir. Parlaklık sıralamasında son sırada olan Deneb ise gökyüzünde en parlak 19. yıldızdır. Güneş’ten uzaklığı hakkında hala kesin bir kabul olmamakla birlikte en çok kabul gören görüş yaklaşık 1500 ışık yılı uzaklıkta bulunduğu görüşüdür. Vega’nın hemen sol altında bulunmaktadır.
KIŞ ÜÇGENİ:
Hayali bir eşkenar üçgen şeklinde olan bu asterizm, kış aylarında kuzey yarımküreden, yaz aylarında ise güney yarımküreden görülebilir durumdadır. Kış Üçgeni Betelgeuse, Sirius ve Procyon yıldızlarından oluşur ve bu yıldızlar sırası ile Avcı, Büyük Köpek ve Küçük Köpek takımyıldızlarında bulunur. Avcı takımyıldızının sağ omzunda bulunan Betelgeuse, Güneş’ten 650 ışık yılı uzaklıkta olup gökyüzünün en parlak 9. yıldızıdır. Gökyüzündeki en parlak yıldız olan Sirius ise Kış Üçgeninin güney ucunda bulunmaktadır. Beyaz renkli bu yıldız Güneş’in 2 katı kütleye sahip olup 8.6 ışık yılı uzaklıktadır. Son olarak ise Procyon gökyüzündeki en parlak 8. Yıldız olarak bilinmektedir. 1.5 Güneş kütlesinde olan Procyon 11.4 ışık yılı uzaktadır.
KIŞ ALTIGENİ:
Kış Üçgeni’nin iki üyesi Sirius ve Procyon’unda içinde bulunduğu Kış Altıgeni adından da anlaşılabileceği üzerine Rigel, Aldebaran, Capella ve Pollux yıldızlarının da bir parçası olduğu altıgen bir şekildir. Bu yıldızlar sırası ile Avcı, Boğa, Arabacı ve ikizler takımyıldızlarında bulunur. Aralık ve mart aylarında Kuzey yarımküreden görülebilmekte iken şubat ve mart ayları arasında güney yarımküreden de görülebilir olmaktadır.
BAHAR ÜÇGENİ:
Çoban, Başak ve Aslan takımyıldızlarını birbirine bağlayan Bahar Üçgeni her biri bulundukları takımyıldızınız en parlak yıldızı olan Arcturus, Spica ve Regulus’tan oluşur. Mart ve mayıs ayları arasında kuzey yarımkürede görünür durumdadır.
BÜYÜK ELMAS:
Virgo’nun Elması olarak da bilinen bu asterizm Canes Venatici takımyıldızında bulunan Cor Caroli ikili yıldız sisteminin Bahar Üçgeni ile birleştirilmesi ile ortaya çıkmıştır. Gökyüzünde oldukça büyük bir alan kaplayan Büyük Elmas, Büyük Kepçe’den bile daha büyük olması ile dikkat çekmektedir. Bahar aylarında Kuzey yarımküreden görülebilmektedir.
BÜYÜK KEPÇE:
Gökyüzünde en kolay tanınabilen şekillerden biri olan Büyük Kepçe, Büyük Ayı takımyıldızının 7 parlak yıldızı Alkaid, Mizar, Alioth, Megrez, Phecda, Dubhe ve Merak tarafından oluşmaktadır. 7 yıldızın 4’ü gövdeyi oluştururken 3’ü tutacağı oluşturmaktadır. Asterizmin en parlak yıldızı olan Alioth aynı zamanda gökyüzündeki en parlak 31. Yıldızdır. Bir çok kültür tarafından tanınmakta olan bu asterizm pulluk ve büyük vagon gibi adlarla da anılabilmektedir. Ayrıca farklı kültürlerde bir çok farklı hikayeye konu olmuştur. Örneğin, bir Arap hikayesinde 4 yıldızın oluşturduğu gövde bir tabutu temsil ederken, tutacak ise yas tutan insanları temsil etmektedir. Bazı Amerikan yerlileri ise gövdeyi bir ayı olarak ve tutacaktaki 3 yıldızı bu ayıyı takip eden yavrular veya avcılar olarak düşünmektedir.
AVCININ KEMERİ:
Altinak, Almila ve Mintaka yıldızlarından oluşan bu sistem aynı zamanda 3 Krallar ve 3 Kız Kardeşler olarak da bilinmektedir. Avcının Kemeri ismini ise üç yıldızın Avcının kıyafetinde duran bir kemeri oluşturuyormuş gibi durmasından almıştır. Avcı takımyıldızını bulmada çok büyük kolaylık sağlayan bu asterism, Kuzey yarımkürede kış aylarında gözlemlenebilir iken güney yarımkürede yaz aylarında görülebilir duruma gelmektedir. Özellikle Ocak ayında 21.00 saatlerinde görünürlüğü en yüksek seviyeye gelmektedir. Kemerin sağ tarafında bir üçlü yıldız sistemi olan Altinak bulunmaktadır. Sistemin ana yıldızı olan Altinak çap olarak Güneş’ten 20 kat daha büyük olup 1260 ışık yılı uzaklıktadır. Bir üstdev olan Alnilam gökyüzündeki en parlak 29. Yıldızdır ve Avcının Kemerinin ortasında görülebilmektedir. Güneş’ten yaklaşık 2000 ışık yılı uzaklıktadır. Son olarak kemerin sol tarafında ise Mintaka çoklu yıldız sistemi vardır. Bu sistemi oluşturan yıldızların yaşları hala belirsizliğini korumaktadır.
PEGASUS’UN BÜYÜK KARESİ:
Yaz aylarında kuzey yarımküreden görülebilir durumda olan bu asterizm Pegasus takımyıldızından Markab, Scheat, Algenib ve Andromeda takımyıldızından Alpheratz yıldızının birleşimiyle oluşmuştur. Hepsi 2. Dereceden olan bu yıldızlar benzer parlaklıklara sahiptir. En parlakları ise 97 ışık yılı uzaklıkta bulunan Alpheratz yıldızıdır. Büyük Kare Pegasus’un gövdesini temsil etmektedir.
ELBİSE ASKISI:
Elbise Askısı ya da Brocchi’nin Kümesi olarak anılan bu küçük asterism Tilki Takımyıldızında bulunmaktadır. 5 ile 7 Derece arası 10 tane yıldızdan oluşturmaktadır. Düz bir çizgi üzerinde gibi görünen 6 yıldız ve kancayı oluşturan 4 yıldız elbise askısı görüntüsünü oluşturur.
KEMBLE’İN ÇAĞLAYANI:
Zürafa takımyıldızında bulunan bu şekil birbiri ile bağlantısı bulunmayan bir çok yıldız tarafından oluşmuştur. 5 ile 10 derece arası 20 tane yıldızın olduğu şeklin sonunda ise NGC 1502 açık kümesi görülebilmektedir. Bu asterizm, 7×35’lik dürbünü ile gökyüzünü tararken farkeden keşiş ve amatör astronom Lucian Kemble’nin ardından isimlendirilmiştir. Kemble bu şekli “ Kuzeybatıdan NGC 1502 açık kümesine yuvarlanan bir soluk yıldız çağlayanı” olarak bahsetmiştir.
NAPOLYON’UN ŞAPKASI:
Bazı kaynaklar tarafından Picot 1 olarak da bilinen bu asterizm Fransız astronom Fulbert Picot tarafından keşfedilmiştir. 9 ile 10 derece arası 7 yıldızdan oluşur ve Çoban takımyıldızında bulunur.
Vega, Dünya’dan sadece 25 ışık yılı uzaklıkta bulunan parlak bir yıldızdır. Yazları kuzey yarım kürenin göğünde görülür ve ayrıca Lir(Çalgı) Takımyıldızı’nda yer alan Vega, Kartal Takımyıldızı’ndaki Altair ve Kuğu Takımyıldızı’ndaki Deneb ile birlikte yaz üçgeninin köşelerini oluşturan yıldızlardan biridir.
Vega sadece 450 milyon yaşındadır ve bu da onu, 4.6 milyar yaşındaki kendi yıldızımıza göre, genç bir yıldız yapar. Vega hakkında yapılan çalışmalar astronomlara, oluşumlarının erken evrelerinde olan yıldız sistemleri hakkında daha çok bilgi sağlıyor.
Dünya’nın 26.000 yılda bir yaşadığı yörüngesel salınım yüzünden kuzey anlayışımız değişiyor. Bu sebeple, Vega birkaç bin yıl önce bizim kutup yıldızımızdı ve yaklaşık 12.000 yıl sonra tekrardan kutup yıldızımız olacak.
Lir Takımyıldızı’nda Vega.
Vega’nın Yeri
Vega yaz ortalarında kuzey kutup bölgesinde, neredeyse tam tepede yer alır. Gün içinde sadece 7 saat ufkun altında kalan Vega ayrıca yılın her gecesi görülebilir.
Daha güneyde ise Vega ufkun altında daha fazla zaman geçirir; ama Alaska’da, Kuzey Kanada’da ve Avrupa’nın çoğunda hiç batmaz. Vega’nın tam yeri ise şöyledir:
Bahar Açısı: 18d 36s 56.3sn.
Yükselim: 38 derece 47 dakika 1 saniye.
İlk Gözlemler
Vega’nın mavi-beyaz ışığı çok parlak olduğu için izini antik zamanlara kadar sürmek mümkün; Çinlilerden Polinezyalılara ve Hintlilere kadar. Vega’nın adı ise Arapçadaki “waqi” kelimesinden gelmekte ve “alçalan” ya da “pike yapan” anlamını taşımaktadır.
“Bu isim, o zamanlardaki insanların Lir Takımyıldızı’nı lir kuşu olarak görmektense pike yapan bir akbaba olarak tasvir etmesinden kaynaklanıyor.” diyor Wisegeek sitesinden Michael Anissimov.
Gerek Vega’nın ismi gerekse diğer astronomik katkıları İslam’daki astronominin geleneksel önemini onurlandırıyor, demiş bir araştırmacı. Yıldızları gözlemek, onları takip etmek inananlara namaz vakitlerini ve festival zamanlarını belirlemelerine yardımcı olmalarının yanı sıra kutsal şehir Mekke’yi bulmalarını da sağlıyordu.
“Bu yüzden yüzlerce yıldızın ve takımyıldızının isimleri Arapçadan gelmekte: Altair, Deneb, Vega ve Rigel bunlara örnek olarak verilebilir.” diye yazmış 2013’te Natural dergisinde yayımladığı makalesinde, Şarika Amerikan Üniversitesinde astrofizikçi olan Nidhal Guessoum.
Modern zamanlarda Vega, Güneş haricinde fotoğraflanan ilk yıldızdır. Astronomlar dagerreyotipi tekniğiyle 38 santimetre refraktör kullanarak, 16-17 Temmuz 1850 yılında Harvard Üniversitesi Gözlemevi’nde (Harvard College Observatory) Vega’nın fotoğrafını çekmişlerdir.
Yıldız ayrıca 1872’de spektrografik analizi yapılacak ilk yıldız olarak seçilmiştir. Amatör astronom Henry Draper, Vega’nın ışığını kırarak yıldızı oluşturan elementleri ortaya çıkaran ilk kişi olmuştur.
Son Yıllarda Vega
Vega, Carl Sagan’ın 1985’te yayımladığı Mesaj(Contact) isimli kitabının 1997’de bir Hollywood filmine uyarlanması sonucu popüler kültürde yer edindi. Jodie Foster’ın baş rolü olduğu film, Dünya dışı akıllı yaşamı araştıran bir astronomun Vega’dan yayılan bir sinyali keşfetmesini anlatıyor.
2006 yılında yapılan teleskobik gözlemler ise şunu ortaya çıkardı: Vega o kadar hızlı dönüyor ki kutupları ekvatorundan birkaç bin derece daha sıcak. Kendi etrafındaki bir tam turu 12.5 saatte tamamlayan yıldız, kendi kritik dönme hızının (bir cismin parçalara ayrılmaya başlayacağı hız) %90’ı ile dönmekte.
2013’ün başlarında astronomlar Vega’yı saran bir asteroit kuşağı keşfettiklerini duyurdular, kuşağın içinde kayalık gezegenler olabileceğini de belirterek. Formalhaut’un etrafındakine benzer şekilde iki bölge olduğu düşünülüyor: Buzlu asteroitlerin bulunduğu dış bölge ve daha sıcak uzay taşlarının bulunduğu yıldıza yakın bölge.
Bilim insanları Vega gibi parlak yıldızları, NASA’nın 2018’de başlayan TESS(Transiting Exoplanet Survey Satellite)görevi ile birlikte incelemekteler. TESS’in ana görevi Güneş sistemi dışındaki gezegenleri aramak olsa da TESS, yıldız çeşitliliğini arttıracak izler için de uğraşacak. TESS’in Vega ve benzeri yıldızları incelemesi bilim insanlarının, yıldız gelişiminin erken evreleri hakkında daha çok bilgi sahibi olmalarını sağlayacak.
İnsanlar uzun zaman boyunca göklere baktı, etraflarındaki evrene bir anlam ve düzen katmak için araştırma yaptılar. Takımyıldızların -gökyüzü üzerine rastgele serpilmiş yıldızların kolayca ayırt edilebilmesi için düşünülen kümeler- hareketi izlenmesi en kolay olanı olsa da tutulmalar ve gezegenlerin hareketi gibi diğer göksel olaylar da tahmin edildi ve belirlendi.
Astronominin Tanımı
Astronomi güneş, ay, yıldızlar, gezegenler, kuyruklu yıldızlar, gazlar, galaksiler, tozlar ve diğer Dünya dışı cisim ve olgular üzerinde çalışan bilim dalıdır. K-4 öğrencileri için müfredatta NASA astronomiyi basit olarak “yıldız, gezegen ve uzay incelemesi” olarak tanımlar. Astronomi ve astroloji tarihsel olarak ilişkilendirilmiştir, ancak astroloji bir bilim değildir ve artık astronomi ile ilgisi olmadığı kabul edilmektedir.
Aşağıda, astronomi tarihi ve kozmoloji de dahil olmak üzere ilgili çalışma alanlarını tartışacağız.
NGC 7026, bir gezegenimsi bulutsu. Telif: ESA/Hubble & NASA
Tarihsel olarak astronomi, göksel cisimlerin gözlemine yoğunlaşmıştır. Astrofizik de buna yakın bir işle uğraşır. Özetle astrofizik, astronomi fiziğinin çalışmalarını içerir ve uzaydaki nesnelerin hareketi, davranışı ve özelliklerine odaklanır. Bununla birlikte modern astronomi, bu nesnelerin hareketlerinin ve özelliklerinin birçok unsurunu içerir ve bu iki terim günümüzde genellikle birbirleri yerine kullanılır.
Modern astronomlar iki farklı alana eğilim göstermişlerdir: Teorik ve Gözlemsel.
Gözlemsel Astronomlar direkt olarak yıldızların, gezegenlerin, galaksilerin vb. üzerinde çalışırlar.
Teorik Astronomlar sistemlerin nasıl evrimleşmiş olabileceğini analiz eder ve modellerler.
Diğer bilim alanlarının aksine, astronomlar bir sistemi tamamen doğumundan ölümüne kadar gözlemleyemezler; yıldızların, Dünya’nın ve galaksilerin ömrü milyarlarca yıl sürüyor. Bunun yerine astronomlar, cisimlerin nasıl oluştuklarını, geliştiklerini ve öldüklerini belirlemek için evrimlerinin çeşitli evrelerindeki anlık görüntülere güvenmek zorundalar. Bu nedenle, teorik ve gözlemsel astronomi bir araya gelme eğilimindedir, çünkü teorik bilim insanları simülasyon oluşturmak için, toplanan bilgileri kullanırken; gözlemler, modellerin onaylanmasının ya da düzeltilmesinin belirlenmesinde görev alır.
Astronomi, bilim insanlarının belirli nesnelerde uzmanlaşmasına izin veren bir dizi alt alanlara ayrılmıştır.
Jüpiter’deki büyük kırmızı leke. Telif: Credit: Christopher Go via NASA
Gezegensel astronomlar (gezegen bilimciler olarak da adlandırılırlar) gezegenlerin büyümesi, evrimi ve ölümüne odaklanırlar. Birçoğu güneş sistemi içindeki dünyaları incelerken, bazıları da diğer yıldızların etrafındaki gezegenlerin neye benzediğini tahmin etmek için giderek büyüyen kanıtları kullanırlar. University College London’a göre, gezegen bilimi “astronomi, atmosfer bilimi, jeoloji, uzay fiziği, biyoloji ve kimya gibi konuları içeren disiplinler arası bir alandır.”
Yıldız astronomları gözlerini yıldızlara, karadeliklere, bulutsulara, beyaz cücelere ve yıldız ölümlerinden geriye kalan süpernovalara çevirirler. Kaliforniya Üniversitesi, Los Angeles, “Yıldız astronomisinin odak noktası evrende meydana gelen fiziksel ve kimyasal süreçler üzerinedir” diyor.
Güneş’in aktif bölgesi 10030, 15 Temmuz 2002. Telif: Royal Swedish Academy of Sciences
Güneş astronomları zamanlarını tek bir yıldızın(güneşimizin) analizini yaparak geçirirler. NASA’ya göre “Güneşten gelen ışığın miktarı ve kalitesi, zaman ölçeklerinde milisaniyeden milyarlarca yıla kadar değişiyor.” Bu değişiklikleri anlamak, bilim insanlarının Dünya’nın nasıl etkilendiğini fark etmesine yardımcı olabilir. Güneş ayrıca diğer yıldızların nasıl çalıştığını anlamamıza yardımcı olur çünkü güneş, yüzeyiyle ilgili detayları ortaya çıkarabilecek kadar bize yakın olan tek yıldız.
Galaktik astronomlar galaksimiz Samanyolu üzerinde çalışırken, ekstragalaktik (Samanyolu’nun dışında olan) astronomlar Samanyolu’nun dışında kalan yıldızların nasıl oluştuğunu, değiştiğini ve öldüğünü saptarlar. Wisconsin-Madison Üniversitesi “Dağılımları, yapısal içerikleri ve içindeki yıldızlarla gaz bulutlarının fiziksel yapıları, sürekli evrilen Gökadamızın tarihi hakkında iz sürmemizi sağlıyor” diyor.
Kozmologlar evreni bütün olarak ele alırlar. Büyük patlamadaki doğumundan evrimine ve nihai olarak ölümüne kadar… Astronomi, her zaman olmasa da sıklıkla somut, gözlemlenebilir şeyler hakkındayken; kozmoloji ise genellikle evrenin geniş çaplı özelliklerini, sicim teorisi gibi ezoterik, görünmez ve bazen teorik şeyleri, karanlık madde, karanlık enerji ve çoklu evrenler kuramını içerir.
Astronomik gözlemciler, evrendeki nesneleri geniş mesafede incelemek için, elektromanyetik spektrumda farklı dalga boylarına (radyo dalgalarından görünür ışığa, X ışınlarına ve gama ışınlarına) güvenirler. İlk teleskoplar, çıplak gözle ne görülebilecekse, bunun üzerine basit optik çalışmalara odaklandı ve hala birçok teleskop buna devam ediyor.
Ancak ışık dalgaları çok ya da az enerjik hale geldikçe, daha hızlı veya daha yavaş hareket ederler. Farklı dalga boylarını incelemek için farklı teleskoplar gereklidir. Kısa dalga boyuna sahip yüksek enerjili ışınımlar, ultraviyole, X ışını ve gama ışını şeklinde görünürken; daha enerjili olanlar daha uzun dalga boylu kızılötesi ve radyo dalgaları yayar.
Astrometri (Gök ölçümü) Güneş, Ay ve gezegenlerin ölçüsü olan, astronominin en eski koludur. Gök cisimlerinin hareketlerinin kesin olarak hesaplanması, diğer alanlardaki astronomların, gezegenlerin ve yıldızların doğuşunu ve evrimini modellemesine ve meteor yağmurları ile kuyruklu yıldızların görüneceği zamanın tahmin edilmesine olanak sağlar. Planetary Society’ye göre, “Astrometri güneşdışı gezegenleri tespit etmek için kullanılan eski bir yöntemdir”, buna rağmen işlemesi zor bir süreçtir.
İlk astronomlar gökyüzündeki desenleri fark ettiler, hareketlerini izlemek ve tahmin etmek için bunları bir düzene koymaya çalıştılar. Takımyıldızları olarak bilinen bu desenler, geçmişte yaşayan insanların mevsimleri öğrenmelerine yardımcı oldu. Yıldızların ve diğer göksel cisimlerin hareketi, Çin, Mısır, Yunanistan, Mezopotamya ve Hindistan başta olmak üzere dünya çapında takip edildi.
Astronomun tasviri, gece teleskop başında yalnız bir ruh gibi düşünülmüştür. Ancak günümüzdeki en zorlu astronomi, bilgisayarlar ve bilgisayarlardan gelen veri ve görüntüler üzerinde çalışan astronomlar tarafından kontrol edilen uzaktaki teleskoplarla -yeryüzündeki veya gökyüzündeki- yapılır.
Fotoğrafçılığın ve özellikle dijital fotoğrafçılığın gelişinden bu yana astronomlar, sadece bilimsel olarak bilgi veren değil insanları büyüleyen inanılmaz fotoğraflar ortaya çıkardılar.
Astronomlar ve uzay uçuşu programları, kendi görevleri başladığında dışarıdan (Ay ya da ötesi) Dünya’ya bakıp Dünya’nın harika fotoğraflarının çekilmesine katkı sağladılar.
Mağara çağlarından bu yana, insanların ilgisini çeken bir yer olmuştur gökyüzü. Gökyüzünü aydınlatan o hayat kaynağı sarı ışık huzmesi ve bu büyük ışık huzmesinin yokluğunda ortaya çıkan ufak ateş parçaları… İnsanların bu cisimlerin belirli bir kurallar dizisi dâhilinde hareket ettiğini fark etmeleri uzun sürmedi. Bundan dolayı da eski zamanlarda insanlar için gökyüzünü okumak, hayatta kalabilmeleri için oldukça gerekli bir hale geldi çünkü gökyüzündeki hareketlilik, atalarımız için bir nevi takvim niteliğindeydi. Tarımın icat edilmesinden sonra ekimin ve hasatın ne zaman yapılması gerektiğini bu gökyüzü haritası söylüyordu. Güneş ve yıldızlar mevsimleri belirliyor, Ay ise gel-gitleri, birçok hayvanın yaşam evrelerini belirliyordu. Güneş, yıldızlar ve Ay ‘ın insan yaşamı üzeri etkisi olduğuna göre atalarımızın aklına şu soru gelmiş olmalı: “Gökteki öteki cisimler insan yaşamını etkiliyorsa, gezegenlerin etkisi ne olabilir ?”
Astrolojiye girmeden önce takımyıldız kavramını anlatmamız gerekir. Takımyıldızlar, antik çağlarda tanrılar, savaşçılar gibi karakterlerin sahip olduğu mitolojik hikâyelerin adeta tuvalleri idi. İnanılmaz bir hayal günüce sahip bu insanlar, yarattıkları eşsiz mitolojik kültürlerini ve destanlarını gökyüzüne dökmüşlerdi. Öyle ki, bu hikâyelere göre avcı avını hedef alıyor, Pegasus, kanatlanıp gökyüzüne uçuyor ve prenses Andromeda ise hapis düştüğü zindandan kaçıyordu. O zamanlardaki insanlar için gökyüzündeki yıldızlar adeta “noktaları birleştir” oyunu gibiydi. Bu birleştirilmiş noktalar arasında önemli olan birkaç takımyıldız vardır. Bu takımyıldızların özelliği Güneş’in bulunduğu yörünge içinde olmuş olmalarıdır ve bu özellik, Güneş’in hangi mevsimde hangi takımyıldız üzerinde olduğunu belirtmeye olanak sağlar. Antik çağlarda bu yapının yardımı ile “Zodyak Çemberi” adı verilen takvim benzeri bir cetvel yapılmıştı. Bu cetvel, tutulmaları ve gündönümlerini(ekinoks) tahmin etmeye olanak vermekteydi. Astrolojinin ortaya çıkışı, bu takımyıldızların insan hayatını etkileyip etkilemediğini sorgulanması ile ortaya çıkmaya başladı.
Astrolojinin kökenleri Batlamyus adıyla bilinen Claudius Ptolemaus’a kadar iner. Babilliler gökyüzünü 12’ye ayırmış ve bugün aşina olduğumuz burçları ortaya çıkarmışlardır. Carl Sagan Cosmos adlı kitabında Batlamyus’un Tetrabiblos adlı astoloji kitabından bir kaydı aktarmış. Kitapta yazanlara göre Batlamyus gezegenlerin sadece insanların huylarını etkilediğine inanmakla kalmıyor aynı zamanda bedensel özelliklerini de etkilediğinden bahsediyor. Bir teoriye bilimsel diyebilmemiz için deneysel verilerle desteklenebilmesi gerekir. Ancak Astrolojinin ve yıldız fallarının birçok mantıksal soruya cevap veremediği ortada. Mesela,
İkizlerin yaşamı… İkizlerin doğumu aynı gezegenin belirli bir yerde oluşuna rastlar. Fakat yaşadıkları hayatlar birbirinden farklıdır.
Burçların belirlenmesinde ana rahmine düşme zamanı değil de doğum saati ve günü göz önüne alınır.
Çoğu Astrolojik terim, Dünyanın merkezde olduğuna inanıldığı zamandan kalmadır. Güneş Merkezli modellerde anlamlarını yitirirler.
Peki ya, Uranüs, Neptün ve Plüton… Antik çağda bu gezegenler gözlemlenemiyordu. Gezegenlerin konumunun, insan davranışı ve olaylar üzerine bir etkisi varsa, o zaman bu gök cisimleri olmadan kurulmuş olan astrolojik denklemler nasıl olur da doğru olabilir?
Bahsedilen Güneş yörüngesine Aralık-Ocak ayları içerisinde Yılancı adı verilen bir takımyıldız bulunmakta, bu takımyıldız astrologlar tarafından yok sayılmıştır.
Astrologlar tarafından bir burcun etki süresi, Güneş’in arkasında kaldığı süreye göre belirlenmekte, ancak tüm burç takımyıldızları aynı büyüklükte değil. Mesela Akrep Burcunun Güneş arkasında kalma süresi iki ay iken Terazinin yarım aydır. Dolayısıyla her burcun etki süresinin bir ay olması anlamsızdır.
Astrolojiye ve yıldız fallarına olan inancı tersine çevirmek için girişimde bulunan Bart Bok, Lawrence Jerome ve Paul Kurtz 1975 yılında 19‘u Nobel ödüllü alan 192 bilim insanı tarafından imzalanan bir bildiri yayınladılar. Bildiride verilen tepki, biraz da günümüz basın kuruşlarınadır zira günlük gazetelerde hep fallar ve burç yorumları görebilirken nadiren bilim haberleri görebilirsiniz. Tamamen antik çağlara ait uydurma fikirler üzerinden insanlar günümüzde para kazanmaktadır.
Astrolojiye olan inanışta “Forer (Barnum) Etkisi” de oldukça etkilidir, çünkü genel topluma hitap eden şeyler kişisel de algılanabilmektedir. Aslında bu söylenenler tahmin değil öneri niteliğindedir. Dünyada terazi burcuna sahip milyonlarca insan var. Astrologlar genel yorumlar yapıyorlar ki birçok insana uysun. Bu belirsizlik bilimin çürütülebilirlik özelliğine de ortadan kaldırıp, sözde bilim olduğuna işaret eden bir diğer neden olarak gösterilebilir.
Yıldızlar ve gezgenler bizleri elbette etkilerler, ancak aramızdaki bağ astrologların önerdiğinden çok daha muhteşemdir. Bizler şu anda gökyüzünde gördüğünüz milyarlarca ve milyarlarca yıldıza, etrafımızı saran bir higgs alanıyla, kütleçekimi alanlarıyla bağlıyız ve yaptığımız her ufak hareket, bu cisimlere etki etmekte. Bu açıdan burcunuz size 3 vakte kadar ne olacağını söyleyemez ancak gezegenimizin sonraki zamanlardaki konumu hakkında fikir verebilir.
Ateş insanlık tarihindeki ilk ve en önemli bilimsel buluşlardan biridir. Binlerce yıl boyunca insanlık tarihinde belirli bir çağı kapatıp diğerini açmıştır. Kimi insanlar onu tanrı ilan etmiş, kimisi de karşı aşiretin yemeklerini çalmak için kullanmıştır. Bu gizemli tepkimenin tam anlamıyla ne olduğunu anlamamız ise, onu kullanmaya başlamamızdan binlerce yıl sonrasına dayanır.
Ateş, anlaşılması kolay bir şey değildir, çünkü içindeki tepkimeler oldukça karmaşıktır. Ateşin gizemini anlayabilmek için ise maddenin gizemli bir hali olan plazmayı anlamak gerekir. Ancak bu konuda pek şanslı değiliz çünkü bu hala Dünya’da çoğunlukla ateşte rastlamaktayız.. Ayrıca yalnızca sıradan bir mum alevinde bile binlerce farklı kimyasal tepkime meydana gelmekte. Durumu biraz basitleştirirsek aslında gördüğümüz ve bize ısı ile ışık veren tepkime havadaki Hidrokarbonların, belirli bir sürtünme ya da kıvılcım yardımıyla Oksijen ile tepkimeye girerek ‘i ve suyu açığa çıkartmasıdır. Buna yanma denir. Kozmosun tamamında yanma eyleminin temel gereksinimi Oksijen molekülleridir.
Peki, oksijenin etrafta bulunmadığı ama bizim laboratuarımızda ekleyebileceğimiz suni bir ortamda ateş nasıl olur? Bunun yanıtını Uzay kimyacıları Uluslararası Uzay İstasyonu ISS’de arıyorlar. Yakın zamanda da elde ettikleri sonuçları gösteren bir açıklamada bulundular.
ISS gibi düşük yerçekimli ortamlarda ateşin hareketini araştırmak üzerine FLEX adında bir proje oluşturuldu. Projede yer alan Dr. Forman A. Williams “Elementler alev almadan yanıyorlar, bu cümleyi ilk kurduğumda ben de dediğime inanmamıştım.” diye araştırma sonucunu açıkladı. Normal koşullarda yanan bir alev belirli bir miktar ve Su oluşturur, bununla birlikte ortaya 1500 ile 2000 K ( yaklaşık 1227 ve 1727 C̊) arasında sıcaklık açığa çıkar. Dolayısıyla bu yanma tepkimesi; birçoğu gibi dışarıya ısıveren, yani ekzotermik, bir tepkimedir.
Uzayda oluşturduğumuz ateşlerde ise kimyasal açıdan Dünya’dakinden bambaşka bir durum gözlemlendi. Uzayda yanan bir ateşte ve Su açığa çıkmıyor. Yerine CO(Karbon Monoksit) ve Formaldehit( ) adında zehirli bir gaz açığa çıkarıyor. Dünya’da da uzay ortamı gibi izole ortamlarda bu tip alevler üretilmiş, ancak hemen yok olmuşlardı.
Henüz böyle bir sonuçla karşılaşmamızın tam sebebi araştırılırken farkına varıldı ki bu yanma eylemi 500 K (yaklaşık 227 C̊) kadar bir sıcaklık açığa çıkmakta. Elbette bizim günlük hayatımız için bu bile yüksek bir miktar, fakat tepkimenin gerçekleşmsi için gereken ısının yarısı bile değil. Enerjinin ısı yoluyla değil de başka bir yolla dönüştürülüyor olması şu an ISS’deki kimyacıların araştırma konusu.
Araştırma görevlilerinden Dr. Williams ekliyor “Uzaydaki yanma tepkimeleri hakkında daha fazla fikir sahibi olmamız, uzayda yanma tepkimeleri ile oluşturulacak farklı motorlar için bize daha fazla bilgi sağlayacak. Bundan dolayı bu deneylerin ve pratikteki tüm sonuçların yeni bir teoriye filiz vermesi beklenmekte. Bu tür bir deneyi yapmak için ise Uzaydaki en büyük tesis olan ISS mükemmel bir yer.”
Yaşam hakkında elde ettiğimiz bilgiler arttıkça cevaplamak istediğimiz sorular da aynı oranda artıyor. Ancak Richard Feynman’ın dediği gibi “Bilimde henüz açıklayamadığımız soruların olması beni korkuya sürüklemiyor, aksine çocuksu merakımı yeniden tetikleyip daha büyük bir zevk ile araştırmalarıma devam etmemi sağlıyor.”
Şubat 2013, Bilim ve Gelecek Dergisi
Dr. Tony Philips’in “Strange Flames On The ISS” Makalesinden yararlanılmıştır.
Bu yazıyı okumadan evvel bazı terimlere aşina olmanız adına daha önce yazmış olduğum “Güneş Sistemi Rehberi” ismindeki yazıyı okumanızı tavsiye ederim. Zihninizde oluşabilecek soruları cevaplamak adına, bahsettiğim yazıyı bu yazının sonrasında da okuyabilirsiniz .
Bir bütünün parçası olmak. Bu cümle size ne ifade ediyor? Sizce insanlar bir bütünün parçası olmak zorunda mı yoksa herhangi bir bütüne ait olmama şansımız var mı? Bulunduğunuz noktada çevrenize bir bakının veya yaşadıklarınızı düşünün; size göre bir bütün olmak ne demek? Aileleri, akrabaları, arkadaş gruplarını, pek mutlu bir çifti, bir okuldaki sınıfı ve benzeri örnekleri; bunların her birini kendi alanlarında bir bütün olarak kabul edebilir miyiz? Sayılanların her biri soyut da olsa bir bütün olarak tanımlanabilirler ve fark edebileceğiniz üzere çevremizde yer alan bütünler listesini arzuladığımız kadar uzatabiliriz. Çünkü hayatımızın her alanında yine bizlerin oluşturduğu istisnasız bir bütünlük topluluğu var, bir bütün oluşturan küçük parçalar var. Şu anda parçası olduğunuz ya da olmadığınız her bir bütünün kökeni, geçmişteki uzantılarımızın, sosyal olmanın gücünü keşfetmesine dayanıyor. Bizler, sosyal olabildiğimiz için şu anda bu denli kibirli, (biraz) zeki ve karmaşık varlıklarız. Böylece biz insanlar, geliştik ve hayatımızın her alanındaki küçük parçalara birer soyut anlam yükleyerek birleştirdik ve gerek kavramsal gerekse gerçek manada bir bütün oluşturduk.
Peki, sizce bir bütünün parçası olabilmek mi daha büyüleyicidir yoksa herhangi bir bütünün parçası olamamak mı? Böylesi bir soruya gezegenimizdeki kendi kurguladığımız gerçeklik ile değil de daha da somut bir açıdan cevap arayalım. Tam olarak bu noktada kozmos bizlere bir yardım eli uzatıyor. Geceleri temiz bir gökyüzü aracılığıyla gözlemlediğimiz o evren, bizlere gayet etkileyici bir cevap veriyor; her iki durum da büyüleyici olabilir. Hayatımda yaptığım ilk gözlem sonucunda ilk görüşte aşık olduğum Satürn de büyüleyici, Güneş Sistemi henüz bebeklik evresindeyken herhangi bir gezegen oluşumuna katılamadığından sistemin uzaklarına sürgün edilmiş, yıllar boyu hatırlanmayan, sadece (geçmiş bir yazımda da bahsettiğim gibi) dev gezegenlerin ve yıldızların rutin geçişi esnasında onların kütle çekim oyunlarına kanıp yıldızımıza doğru yönelen, Güneş’e yaklaştıkça eriyen ve kendisi eksilirken ardında oluşan o uzun uzadıya kuyrukları ile hatırladığımız kuyruklu yıldızlar da.
Giriş:
Günümüzden yaklaşık olarak 4,6 milyar yıl kadar önce, Güneş Sistemi henüz yeni yeni oluşur iken herhangi bir yapıya katılamayan bu artıklar bizlere periyodik olarak görsel şölen hazırlamak üzere kenara çekildiler. Astronomlar onları, içerdikleri toz, buz, karbon dioksit, amonyak, metan ve bazı değişik bileşiklerinden ötürü “kirli kar topları” ya da “karlı kirli toplar” olarak çağırıyorlar.
Kuyruklu yıldızların bazıları Güneş’in etrafında turlar iken çoğunluğu ise Plüton’un ötesinde bulunan Oort Bulutu ismindeki bölgede yer alıyor. Ara sıra bir bütünün parçası olamayan bu artıklar kütle çekim oyunları sonucunda İç Güneş Sistemi’ne doğru yaklaşıyorlar; bazıları bunu düzenli olarak bazıları ise birkaç yüzyılda bir yapıyor. Günümüzde yaşayan insanların çoğu, geçmişin artıklarının bizlere sunduğu görsel şölene tanıklık etmemiş olabilirler fakat yalnızlığın ve eksilmenin büyüleyici güzelliğine tanık edenler gördükleri manzarayı hayatları boyu unutamazlar.
Fiziksel Özellikleri:
Bir kuyruklu yıldızın çekirdeği çoğunlukla organik madde ile kaplı buz ve tozdan oluşur. NASA’ya göre kuyruklu yıldızın içerisinde yer alan buz, çoğunlukla donmuş su halindedir. Bunun yanı sıra buzun içeriğinde; donmuş amonyak, donmuş karbon dioksit, donmuş karbon monoksit ve donmuş haldeki metan da bulunabilir. Kuyruklu yıldız, gerek doğal bir şekilde gerekse dev bir cismin kütle çekimi nedeniyle, Güneş’e doğru yaklaştıkça yüzeyinde bulunan buz yavaşça ısınıp gaz haline geçer ve kuyruklu yıldızın başında yoğun bir bulut oluşturur. Biz o bulut görünümlü “şeye” kuyruklu yıldız saçı (coma) diyoruz. Güneş ışığı ve rüzgarları aracılığıyla kuyruklu yıldıza ulaşan radyasyon, kuyruklu yıldız saçındaki toz partiküllerini dışarıya doğru sürükleyerek bir tür “toz kuyruğu” oluşturur. Bu olay esnasında, kuyruklu yıldız yüzeyindeki bazı gazlar ise yine radyasyon ve sıcaklık etkisiyle iyon haline geçip, “iyon kuyruğu” oluşturur. Kuyruklu yıldızların kuyrukları güneş ışığı ve güneş rüzgarı ile şekillendiğinden, bu kuyruklar her zaman Güneş’in karşı tarafına doğru bizleri büyülüyor olurlar.
Asteroidler ve kuyruklu yıldızlar ilk bakışta karıştırılabilirler, zira onları birbirinden ayırt eden yegane özellikleri içerikleridir. Asteroidler, metal ve kaya içerikli iken; kuyruklu yıldızların içeriğinde Güneş’e yaklaştığında bizleri etkileyecek hale bürünen buz, toz ve organik bileşikler bulunur.
Hale-Bopp Kuyruklu Yıldızı. Telif: NASA
Bazı kuyruklu yıldızların saçı 1.6 milyon kilometreye, kuyrukları ise 160 milyon kilometreye kadar uzanabilir. Kuyruklu yıldızların saçları ve kuyrukları Güneş ışığını yansıttığından kendileri Güneş’e doğru yaklaştığı vakit yeterince büyük iseler temiz bir gökyüzünde onları çıplak gözle rahatlıkla gözlemleyebiliriz. Ne yazık ki çoğu kuyruklu yıldız, çıplak gözle gözlemlenemeyecek kadar küçük olduğundan kendilerini yalnızca teleskop aracılığıyla gözlemleyebiliyoruz.
Yörüngesel Özellikleri:
Astronomlar kuyruklu yıldızları Güneş etrafındaki yörüngelerini tamamlama sürelerine göre sınıflara ayırıyorlar. Bu ayrıma göre üç farklı kuyruklu yıldız sınıfı var; kısa periyotlu kuyruklu yıldızlar, uzun periyotlu kuyruklu yıldızlar ve Güneş ile bağlantısı olmayan tek geçişlik kuyruklu yıldızlar. Kısa periyotlu kuyruklu yıldızların Güneş etrafındaki bir tam dönüşünü tamamlaması yaklaşık olarak 200 yıla kadar sürebiliyor iken, uzun periyotlu kuyruklu yıldızların bir tam turu tamamlaması için 200 yıldan fazlası gerekebiliyor. Çok uzak olmayan bir geçmişte araştırmacılar Asteroid Kuşağı’nda da bazı kuyruklu yıldızların var olduğunu kanıtladılar. Ve onlara göre, İç Güneş Sistemi içerisindeki gezegenlerin su kaynakları da buradaki kuyruklu yıldızlar olabilir.
Bilim insanları kısa periyotlu kuyruklu yıldızları, periyodik kuyruklu yıldızlar olarak da adlandırabiliyorlar. Periyodik kuyruklu yıldızların Neptün ötesinde yer alan Kuiper Kuşağı’nda yer aldığını ve bu kuyruklu yıldızları aktif hale getiren şeylerin ise dev gezegenlerin kütle çekim gücü olduğunu söylüyorlar. Kuiper Kuşağı’nda bulunan kirli kar topları yalnızlıktan bıkmış olacaklar ki, dev gezegenlerin biraz zorlayıcı olan davetlerini geri çevirmeyerek İç Güneş Sistemi’ne doğru yol alıyorlar. Buna karşın, uzun periyotlu kuyruklu yıldızların, Oort Bulutu ve daha ötesinde ikamet ettikleri düşünülüyor. Bu kuyruklu yıldızların Güneş’e doğru gelmelerinin sebebi ise dev gezegenlerden de daha güçlü kütle çekimine sahip olan galaksimizin yıldızları. Herhangi bir sınıfa girmeyen, diğer kuyruklu yıldızlardan bağımsız olanlar ise Güneş’in çok yakınından geçtikleri için hemen parçalanıp buharlaşan kuyruklu yıldızlardır.
İsimlendirilişleri:
Kuyruklu yıldızlar genelde onları keşfeden insanların ismini alıyorlar. Misal, Shoemaker-Levy 9 kuyruklu yıldızı Eugene, Carolyn Shoemaker ve David Levy tarafından keşfedilen dokuzuncu kısa periyotlu kuyruklu yıldız. Ayrıca kuyruklu yıldızlar, kendilerini keşfeden uzay araçlarının isimleri ile de çağrılabiliyorlar (SOHO ve WISE gibi).
Tarihi:
Eski çağlarda gökyüzünde aniden beliren ateşten kılıçlar, insanları korkutup telaşa düşürürdü. Kuyruklu yıldızlar o zamanlarda genelde kıyamet alameti olarak algılanırdı. Hatta yakın bir geçmişte bile (1910 yılı California bölgesinde) insanlar kuyruklu yıldız geçişi esnasında, kuyruklu yıldızın “zehirli” kuyruğundan etkilenmemek için evlerinin camlarını kapattılar.
Yüzyıllar boyunca bilim insanları kuyruklu yıldızların gezegenimizin atmosferinde dolaştığını düşündü fakat 1577 yılında Danimarkalı astronom Tycho Brahe kuyruklu yıldızların aslında uydumuzdan da ötesinden geçtiklerini kanıtladı. Ve yıllar sonra Isaac Newton kuyruklu yıldızların da eliptik bir yörüngeye sahip olduğunu, onların Güneş’in çevresinde dolaştığını, tekrar ve tekrar insanları telaşa düşüreceklerini ya da büyüleyeceklerini keşfetti.
Çinli astronomlar ise yüzyıllar boyunca kuyruklu yıldızların çok geniş çaplı kayıtlarını tuttular. Halley kuyruklu yıldızı da dahil olmak üzere birçok kuyruklu yıldızın kayıtları Çinli astronomların ellerinde M.Ö 240 yıllarına dek uzanıyor.
Ünlü Kuyruklu Yıldızlar:
Halley. Telif: NASA
Kuşkusuz ki Halley kuyruklu yıldızı gezegenimiz sakinleri tarafından en çok bilinen kuyruklu yıldızdır. Halley kuyruklu yıldızı, her 76 yılda bir Güneş’e yaklaştığında çıplak gözle görülebilir oluyor. Bundan bir önceki yaklaşımı 1986 yılında gerçekleştiğinde gezegenimizden beş adet uzay aracıyla Halley kuyruklu yıldızının çok yakınından geçip, normalde kuyruklu yıldızın saçı tarafından gizlenen kuyruklu yıldızın başına ait eşi benzeri görülmemiş veriler elde ettik. Kabaca patates şeklinde olan 15 kilometre uzunluğundaki Halley kuyruklu yıldızının yüzeyinde eşit miktarda toz ve buz içerdiğini ve içeriğindeki buzun yaklaşık olarak %80 kadarı donmuş haldeki su ve %15 kadarı ise donmuş haldeki karbon monoksit bileşiğinden oluştuğunu öğrendik. Araştırmacılara göre diğer kuyruklu yıldızların da kimyasal yapısının Halley kuyruklu yıldızı ile aynı olduğunu düşünüyor.
Shoemaker-Levy 9. Telif: NASA
1994 yılında Jüpiter ile çarpışıp 21 parçaya ayrılan Shoemaker-Levy 9 kuyruklu yıldızı.
1997 yılında bizlerden 197 milyon kilometre uzaktan geçen Hale-Bopp kuyruklu yıldızı.
ISON. Telif: Damian Peach
2013 yılında yalnızlığını Güneş’e doğru giderek sonlandıran ISON kuyruklu yıldızı.
Son Sözler:
Evren ve onun yansıması olan hayat sürprizler ile doludur. Bu sürprizlerden belki de en şaşırtıcı olanını geçmişin artıklarından biri yaptı. Günümüzden 4,6 milyar yıl kadar önce herhangi bir bütüne katılamamış olan kuyruklu yıldız, milyonlarca yıl sonra katılamadığı bir bütüne uğradı ve küçük küçük parçaların kendi aralarında bir bütün oluşturmasına ön ayak oldu. Sistemimizdeki bir kuyruklu yıldızın dolaylı yoldan sebep olduğu bütünlükte bizler duygularımız ve sosyal ağımız sayesinde çok özel birer parça haline geldik. Birden fazla bütüne ve birden fazla parçaya direkt olarak etki edebilen; kendi içlerinde coşkulu hayatlar yaşayan, nadir ve kırılgan parçalar. Her ne kadar kuyruklu yıldızlar kadar yalnız ve büyüleyici olamasak da, o nadir ve kırılgan parçalar olarak bizler de sonradan başka parçaların oluşturduğu bütüne etki edebiliyoruz. Kuyruklu yıldızların başka bir bütüne etki etmesindeki faktör (kütle çekim) ne yazık ki bizler için geçerli değil. Duygusal varlıklar olan bizler daha soyut kavramlar ile etki etmeyi tetikliyoruz; aile bağı, aşk, dostluk, gelecek kaygısı, para ve daha niceleri. Hayatınız boyunca etki edeceğiniz ve etkileneceğiz parçayı ve faktörü büyük bir titizlikle seçin ki sonraki bütünlüğünüz çok büyük zararlar görmesin, hayallerinize devam edebilin.
Bu yazıyı yazmamda yardımcı olan şarkıları alta iliştirdim. Buraya kadar okuduğunuz için teşekkür ederim. Umuyorum ki beğendiğiniz bir yazı olmuştur. Keyifli dinlemeler.
Aynı gaz bulutunda oluşmuş olan ve kütle çekim etkisiyle bir arada bulunan yıldız topluluklarına yıldız kümesi denir. Yıldız kümeleri iki grupta incelenirler. Genel olarak daha az sayıda, düşük kütle çekimiyle bağlı olan ve çoğunlukla genç yıldızlardan oluşanlara açık yıldız kümeleri; çok sayıda, büyük bir kütle çekimiyle bir arada bulunan ve çoğunlukla yaşlı yıldızlardan oluşanlara ise küresel yıldız kümeleri denir.
M45-Ülker
Açık Yıldız Kümeleri
Açık yıldız kümeleri yalnızca yıldız oluşumunun aktif bir şekilde gerçekleştiği, sarmal ve düzensiz gökadalarda bulunurlar. Samanyolu Gökadası’nda binden fazla açık yıldız kümesi keşfedilmiştir ve henüz keşfedilmemiş bir çok küme olduğu düşünülmektedir. Açık yıldız kümeleri gökadanın disk bölgesinde bulunurlar. Bize en yakın açık yıldız kümesi yaklaşık 151 ışık yılı uzaklıkta bulunan Boğa açık yıldız kümesidir.
Açık yıldız kümelerinin içerdikleri yıldızların sayısı bir kaç bini bulabilir ve aynı gaz bulutundan oluşmuş olan yıldızlar, küresel yıldız kümelerindeki yıldızların aksine belli bir merkezde yoğunlaşmamış, geniş bir alana dağılmışlardır fakat yine de aralarında zayıf bir kütle çekimsel bağ vardır. Bu kümelerin yıldızları, yaklaşık bir kaç milyon yılın sonunda dağılırlar ve böylece küme ömrünün sonuna gelir. En tanınmış açık yıldız kümelerinden bir kaçı Boğa Takımyıldızı’ndaki Ülker(Pleiades, M45) ve Boğa takımyıldızındaki Boğa (Hyades) kümesidir.
NGC5139
Küresel Yıldız Kümeleri
Küresel yıldız kümelerinin içerdiği yıldızlar yoğun bir kütle çekimsel kuvvetle bir arada bulunurlar ve bundan dolayı yıldızları, kümenin merkezine doğru yoğunlaşırlar ve kümeye hemen hemen küresel bir biçim kazandırırlar.
Samanyolu’nda yüz-iki yüz kadar küresel yıldız kümesi bulunmaktadır. Bunların büyük bölümü, gökadanın diskinde bulunan açık yıldız kümelerinin aksine, gökada diskinin altında ve üstünde, ayla denen bölgede yer alırlar. Küresel kümelerdeki yıldız sayısı milyonları bulabilir. Açık kümelerin tersine, küresel kümelerdeki yıldızlar yaşlı yıldızlardır, hatta gökadamızdaki bilinen en yaşlı yıldızların bazıları kapalı(küresel) yıldız kümelerinin elemanlarıdır.
Küresel kümeler, Güneş Sistemi’nden çok uzakta olduğundan, çoğunlukla çıplak gözle görülemezler. Örneğin, Güneş Sistemi’ne en yakın iki küresel yıldız kümesinden biri olan, 12.2 milyar yaşındaki M4, bizden yaklaşık olarak 7.200 ışık yılı uzaklıktadır. Fakat, Herkül Takımyıldızı’ndaki M13 ve birkaç başka küme, yeterince karanlık ortamlardan teleskopsuz olarak ışık benekleri halinde görülebilirler.
Merkür, Güneş çevresinde yaklaşık 88 gün süren dolanma süresi ve 116 günlük kavuşum dönemi ile gökyüzündeki görünür hareketini yılda üç kez yineler.
Bir alt gezegen olması nedeniyle ile her zaman Güneş’e yakın konumdadır ve gözlenmesi Güneş’in parlak ışığı nedeniyle oldukça güçtür. -1,9 Kadir derecesine varabilen parlaklığı ile en parlak yıldızlardan ve bazen Satürn, Mars hatta Jüpiter’den daha ışıklı olabilmesine karşın hiç bir zaman karanlık bir zemin üzerinde izlenemediği için, her kavuşum döneminin en fazla birkaç gün süren bir kısmında, en yüksek batı ya da doğu uzanımı esnasında çıplak gözle görülebilir. Bu gözlem koşulları, doğu uzanımı için Güneş’in batışını izleyen, batı uzanımı için ise Güneş’in doğuşundan az önceki kısa bir süre için gerçekleşir. Bu nedenle her 116 günlük dönemde Merkür bir kez ‘akşam yıldızı’, bir kez de ‘sabah yıldızı’ olarak izlenir.
En yüksek uzanım, yörünge dışmerkezliğinin yüksek olması nedeniyle 18o ile 28o arasında değişir, ancak 28o bile rahat bir gözlem için yeterli değildir. Özellikle tutulum düzleminin ufka daha yakın olduğu yüksek enlemlerden gezegenin görülmesi çok zordur.
Gözlem noktası Yer ekvatoruna yaklaştıkça, Merkür’ün sabah ya da akşam alacakaranlığında ufuktan yüksekliği artacağı için, çıplak gözle görülebilmesi daha kolay olur. Merkür’ün oldukça eliptik yörüngesinin uzun ekseninin Yer yörüngesine göre konumuna bağlı olarak, Dünya’nın Güney Yarıküre’sinin sonbahar başlangıcına denk gelen döneminde, gezegenin olası en yüksek batı uzanımı ile 7olik yörünge eğikliğinin üst üste gelmesi sayesinde Merkür için en uygun gözlem koşulları oluşur. Aynı şekilde olası en yüksek doğu uzanımı ile yörünge eğikliği açısının birbiri üzerine eklenmesi, yine Güney Yarıküre’den bu kez kış aylarında gezegenin rahat gözlenmesine olanak sağlar. Yüksek dışmerkezlik nedeniyle yörünge hızı dolanma sırasında çok değişir ve kavuşum süresi Yer’in Merkür yörüngesine oranla konumuna göre birkaç gün kayabilir.
Yer atmosferinin olumsuz etkilerini en aza indirebilmek amacıyla, teleskop kullanılarak yapılan profesyonel gözlemler Merkür’ün ufuktan iyice yüksekte bulunduğu gün ortası saatlerinde gerçekleştirilir. Tam Güneş tutulmaları çok kısa süre için de olsa Güneş’e çok yakın konumdaki gezegenin gün ortasında çıplak gözle izlenebilmesine olanak sağlar.
Kısıtlayıcı etmenler nedeniyle, yeryüzünden yapılan gözlemler en güçlü teleskoplar kullanıldığında dahi Merkür’ün yüzey şekilleri hakkında yeterli bilgi sağlayamamıştır ve elimizdeki bilgilerin büyük kısmı Mariner 10 Uzay Sondası tarafından sağlananlarla sınırlı kalmıştır.