gokyuzu.org

Galaksimizin Merkezindeki Kara Deliğin Yakınından Geçmek Üzere Olan Yıldız Einstein’ın Teorisini Test Edecek

Birkaç ay içinde astronomlar yakın yörüngesindeki bir yıldızdan sinyal almak için teleskoplarını galaksimizin merkezindeki süper kütleli kara deliğe (Sagittarius A*) doğrultacaklar ve bu onlara Einstein’ın genel görelilik kuramını test etmek için başka bir içerik daha sağlayacak. S0-2 adı verilen bu yıldız, S yıldızları olarak bilinen yıldız sınıfındaki yıldızlardan (S tipi yıldızlarla karıştırılmasın) bir tanesi ve yaklaşık 4.3 milyon Güneş kütlesinde olan Sgr A*’nın (Sagittarius A*’nın kısaltması) yakın yörüngesinde bulunuyor.

S0-2’yi özel yapan şey ,eliptik yörüngesindeki kara deliğe en çok yaklaşan iki yıldızdan biri olmasıdır. Ve bu da yıldızın kara deliğin devasa çekim kuvvetinin etkilerini her 16 yılda bir göstermesi anlamına geliyor.

Genel göreliliğe göre ışık, güçlü bir yer çekimi alanı etkisinde ya gerilecek ya da kızıla kayacaktır. Küçük de olsa yıldızın yörüngesi de bundan etkilenecektir.

S0-2, galaksinin merkezine olan en yakın uzaklığı 17 ışık saatine (Güneş ile Neptün arasındaki mesafenin yaklaşık dört katı) ulaştığında ve ışık hızının yüzde 3’ü hızında giderken UCLA Galactic Center Group ile araştırmacılar bu değişikliklerin gerçekleşip gerçekleşmediğini dikkatli bir şekilde gözlemleyecek. Eğer bunu yaparlarsa genel göreliliği bir kez daha desteklemiş olacaklar.

Şimdi ise yeni bir çalışma sayesinde kırmızıya kayma ölçümünün yapılabileceğini biliyoruz. Fakat olası bir sorun vardı. Ya S0-2 bir ikili yıldızsa, tek bir yıldız değil de iki yıldızsa? Bu durum yapılacak ölçümleri zorlaştırır.

Araştırmaya göre, araştırmacılar olası bir ikili yıldız olarak görülen S0-2’ye yapılan ilk spektroskopik analiz sonucunda çıkarılan sonuca göre büyük ihtimalle S0-2 Güneş kütlesinin yaklaşık 15 katı olan tek bir yıldızdır. Eğer ona eşlik eden başka bir yıldız varsa, çok küçük olmalı ki planlanan bu gözlem üzerinde bir etkisi olmasın.

Galactic Center Group’un müdür yardımcısı Tuan Do, bu ölçümün o türde yapılacak ilk ölçüm olacağını söyledi.

“Yer çekimi, doğanın kuvvetlerinden detaylı bir şekilde en az ölçüm yapılmış olandır. Einstein’ın teorisi bugüne kadar bütün diğer ölçümlerden başarıyla çıktı. Bu yüzden eğer ölçülen sapmalar varsa bu kesinlikle yer çekiminin doğası hakkında birçok soruyu gündeme getirecektir! ”

Göreliliğin bir uygulaması olması nedeniyle S0-2 sadece büyüleyici değildir. Aynı zamanda o da diğer tüm S yıldızları kümesindeki yıldızlar gibi kendine özgüdür.

Yıldız süreçleri bakımından oldukça gençler ve bu da demek oluyor ki Sgr A*’ya yakın oldukları için kara deliğin gelgit kuvvetlerinin yıldız oluşum bölgelerini parçalayabileceği zorlu bir ortamda oluşmaları gerekiyor. O yüzden  de tam olarak formlarını nasıl koruyabildikleri bir gizem olarak karşımıza çıkıyor ve bu, bizim bilmediğimiz başka bir yıldız oluşum mekanizması olabileceği anlamına geliyor.

Araştırmacılar S0-2’yi 1992 yılından beri gözlemliyorlar. Yani en yakın yörüngesini daha önce gözlemiş olmalılar. Aslında bunu Sgr A*’nın varlığını ispatlamak için kullandılar fakat aygıtlar yer çekiminden kaynaklanan yıldızın ışığındaki kızıla kaymayı gözlemlemek için yeterince hassas değildi. Ancak uzayı araştırmak için kullandığımız teknoloji 16 yıl boyunca bayağı gelişti.

“16 yıldır bunun için bekliyoruz. Kara deliğin şiddetli çekim etkisinde yıldızın nasıl davranacağını merak ediyoruz. S0-2 Einstein’ın teorisini mi takip edecek yoksa yıldız mevcut fizik yasalarına karşı mı gelecek? Yakında öğreneceğiz!” diyor başyazar Devin Chu.

S0-2’nin Sgr A*’nın yakınından 2018 ortalarında geçmesi bekleniyordu.

Bu arada ekibin yıldızın ayrıntılı analizini içeren makalesini The Astrophysical Journal’da bulabilirsiniz.

Kaynakça:

https://www.sciencealert.com/star-orbiting-milky-way-supermassive-black-hole-sagittarius-a-einstein-relativity

Çeviri: Ahmet Arda Pektaş

Astrofizik Nedir?

Astrofizik nedir?

Astrofizik; fizik ve kimya kanunlarının yardımıyla yıldızlar, gezegenler, galaksiler, bulutsular ve evrendeki diğer nesnelerin doğumu, yaşamı ve ölümünü açıklayan uzay bilimi dalıdır. Astrofizik; astronomi ve kozmolojiyle sürekli bir etkileşim içindedir.

En kalıplaşmış şekilde:

  • Astronomi; pozisyonları, aydınlatma güçlerini, hareketleri ve diğer karakteristik özellikleri ölçer.
  • Astrofizik evrendeki küçük ila orta büyüklükteki yapılar hakkında fiziksel teoriler oluşturur.
  • Kozmoloji ise bunu evrendeki en büyük yapılar ve tüm evren için yapar.

Uygulamada bu alanlar birbirlerine sıkıca kenetlenmiştir. Bir bulutsunun pozisyonunu ya da hangi tür ışık yaydığını sorun, astronom daha önce cevap verebilir. Bulutsunun hangi maddeden ve nasıl oluştuğunu sorun, astrofizikçi konuşmaya başlayacaktır. Verilerin evrenin oluşumuyla nasıl uyduğunu sorun, kozmolog soruya önce atlayacaktır. Fakat dikkat edin,  bu sorulardan herhangi biri için ikisi ya da üçü hemencecik konuşmaya başlayacaktır.

Astrofiziğin hedefleri

Astrofizikçiler evreni ve evrendeki yerimizi anlamaya çalışır. NASA’nın internet sitesine göre NASA’daki astrofizikçilerin hedefleri evrenin nasıl işlediğini keşfetmek, nasıl başladığı ve geliştiğini araştırmak, diğer yıldızların etrafındaki gezegenlerde yaşam aramaktır.

NASA bu hedeflerin 3 geniş soru ürettiğini belirtiyor:

  • Evren nasıl işliyor?
  • Biz buraya nasıl geldik?
  • Yalnız mıyız?

Newton’la başladı

Astronomi en eski bilimlerden biri iken teorik astrofizik Isaac Newton’la başladı. Newton’dan önce astronomlar gök cisimlerinin hareketlerini  fiziksel bir temel olmadan kompleks matematik modeller kullanarak açıklıyorlardı. Newton uydu ve gezegenlerin yörüngelerini ve Dünya’da atılan bir güllenin izlediği yolu aynı anda açıklayan tek bir teori olduğunu gösterdi. Bunun sonucunda Dünya ve gökyüzü için aynı fiziksel kanunların geçerli olduğunu şaşırtıcı bir şekilde kanıtladı.

Muhtemelen Newton’un modelini diğer önceki modellerden ayıran özellik öngörücü olmakla beraber betimleyici olmasıdır. Uranüs’ün yörüngesindeki sapmalara dayanarak astronomlar yeni bir gezegenin pozisyonunu öngördü, yapılan gözlemlerden sonra bu gezene Neptün adı verildi. Öngörücü olmakla beraber betimleyici olmak bir modern bilim işareti ve astrofizik de bu kategoride.

Astrofizikteki dönüm noktaları

Uzaktaki cisimlerle etkileşime geçmenin tek yolu yaydıkları radyasyonu gözlemlemektir. Çoğu astrofizikçi bunu radyasyon üreten mekanizmaları açıklayan teoriler ortaya çıkararak ve bundan en fazla bilgiyi nasıl çıkaracağımızla ilgili fikirler sağlayarak yapmak zorunda. Yıldızların doğasıyla ilgili ilk fikirler, 19. yüzyılın ortalarında, çiçeği burnunda bir bilim olan spektral analizden elde edilmiştir. Spektral analiz, belirli maddelerin ısıtıldıklarında absorbe ettikleri ve yaydıkları belirli ışık frekanslarını gözlemlemedir. Spektral analiz, hem yeni teorileri yönlendiren hem de test eden uzay bilimleri üçlüsü için önemlidir.

İlkel spektroskopi, yıldızlarda da Dünya’da bulunan maddeler olduğunu ilk kanıtlayan çalışmaydı. Spektroskopi, bazı bulutsuların tamamen gaz halindeyken bazılarının ise yıldız içerdiğini gösterdi. Bu daha sonra, bazı bulutsuların aslında bulutsu olmadığı fikrini pekiştirdi. Peki onlar neydi? Onlar başka galaksilerdi!

1920’lerin başlarında, Cecilia Payne, spektroskopi kullanarak yıldızların ağırlıklı olarak hidrojenden oluştuğunu (en azından yaşlılıklarına kadar) keşfetti. Ayrıca yıldızların spektrumları astrofizikçilere yıldızların Dünya’ya doğru ya da Dünya’dan uzağa ne kadar hızla hareket ettiklerini belirlemelerine yardımcı oldu. Doppler kayması nedeniyle, bir aracın yaydığı sesin bize doğru gelirken ya da bizden uzaklaşırken değişmesi gibi yıldızların spektrumları da aynı şekilde değişecektir. 1930’larda Edwin Hubble, Doppler kayması ve Einstein’ın genel görelilik teorisini birleştirerek evrenin genişlediğine dair sağlam kanıtlar bulmuştur. Bu Einstein’ın teorisi tarafından da öngörülüyordu ve birlikte Big Bang Teorisinin temelini oluşturuyorlar.

Ayrıca 19. yüzyılın ortalarında, fizikçiler Lord Kelvin (William Thomson) ve Gustav Von Helmholtz, kütleçekimsel çökmenin Güneş’e güç sağlayabileceği tahmininde bulundular, fakat eninde sonunda bu şekilde üretilen enerjinin sadece 100.000 yıl yeteceğini fark ettiler. Elli yıl sonra, Einstein’ın ünlü E = mc2 denklemi, astrofizikçilere, gerçek enerji kaynağının ne olabileceğine dair ilk kanıtı sundu (her ne kadar kütleçekimsel çökmenin önemli bir rol oynadığı ortaya çıksa da). Nükleer fizik, kuantum mekaniği ve parçacık fiziği, 20. yüzyılın ilk yarısında gelişmesinden dolayı nükleer füzyonun yıldızlara nasıl güç sağlayabileceğine dair teorileri formüle etmek mümkün hale geldi. Bu teoriler, yıldızların nasıl oluştuğunu, yaşadığını ve öldüğünü tanımlıyor ve aynı zamanda yıldız türlerinin spektrumları, aydınlatma güçleri, yaşları ve diğer özelliklerinde gözlenen dağılımı başarılı bir şekilde açıklar.

Astrofizik, yıldızların ve evrendeki diğer uzaktaki cisimlerin fiziğidir, fakat aynı zamanda Dünya’ya da yakındır. Big Bang Teorisine göre, ilk yıldızlar neredeyse tamamen hidrojenden oluşuyordu. Onlara enerji sağlayan nükleer füzyon süreci, daha ağır bir element olan helyumu oluşturmak için hidrojen atomlarını çarpıştırır. 1957 yılında, ikisi de astronom olan karı koca Geoffrey ve Margaret Burbidge, fizikçi William Alfred Fowler ve Fred Hoyle ile birlikte yıldızların yaşlandıkça nasıl daha da ağır olan elementleri oluşturduğunu gösterdiler. Sadece daha yakın tarihli yıldızların yaşamlarının son aşamalarında, Dünya’yı oluşturan elementlerin(örnek olarak demir (%32,1), oksijen (%30,1), silisyum (%15,1)) üretildiği görülmektedir. Bu elementlerden biri olan karbon, oksijen ile birlikte, biz de dahil olmak üzere tüm canlıların en önemli kısmını oluşturuyor. Böylelikle, astrofizik tamamen yıldız olmasak da tamamen yıldız tozundan olduğumuzu bize söylüyor.

Kariyer olarak astrofizik

Astrofizikçi olmak için yıllarca gözlem yapmak, çalışmak ve deneyim kazanmak gerekiyor. Fakat ortaokul ve lisede bile astronomi kulüplerine katılarak, yerel astronomi etkinliklerine giderek, astronomi ve astrofizik alanında ücretsiz çevrimiçi dersler alarak ve Space.com gibi web sitelerindek ilgili haberleri takip ederek az da olsa işin içine girebilirsiniz.

Üniversitede öğrenciler astrofizikte doktora yapmayı ve daha sonra astrofizikte doktora sonrası bir pozisyonda görev almayı hedeflemelidir. Astrofizikçiler devlette, üniversite laboratuvarlarında ve bazen de özel organizasyonlarda çalışabilirler.

Study.com, astrofizikçi olma yolunda ilerlemeniz için aşağıdaki adımları önermektedir:

Lise boyunca matematik ve fen dersleri alın. Çok çeşitli fen dersleri aldığınızdan emin olun. Astronomi ve astrofizik, evrendeki fenomenleri daha iyi anlamak için sık sık biyoloji, kimya ve diğer bilimlerin öğelerini birleştirir. Ayrıca matematik ve fen alanında herhangi bir yaz işini veya stajı göz önünde bulundurun. Gönüllü çalışma öz geçmişinizi desteklemede yardımcı olabilir.

Matematik ya da fenle ilgili bir lisans derecesine devam edin. Astrofizikte lisans ideal olmasına karşın o alana başka birçok yol var. Bilgisayar bilimlerinde ön lisans ve lisans eğitimi alabilirsiniz. Örneğin bu, verileri analiz etmenize yardımcı olmanız önemlidir. Hangi programların size yardımcı olabileceğini öğrenmek için lise rehberlik danışmanı veya yerel üniversitenizle konuşmak en iyi yoldur.

Araştırma fırsatlarından yararlanın. Pek çok üniversitede öğrencilerin keşiflere katılabildiği ve hatta bazen bu çalışmaların yayınlandığı laboratuvarlar vardır. NASA gibi ajanslar da zaman zaman staj imkanı sunuyor.

Astrofizikte doktora yapın. Doktora meşakatli bir yol fakat ABD İşçi İstatistikleri Bürosu, astrofizikçilerin büyük çoğunluğunun doktora yaptığını belirtiyor. Geniş bir bilgi tabanına sahip olmak için astronomi, bilgisayar bilimi, matematik, fizik ve istatistik dersleri aldığınızdan emin olun.

2015 yılında, o zamanlar Arizona Eyalet Üniversitesinde olan gezegensel astrofizikçi Natalie Hinkel Lifehacker’a ayrıntılı bir röportaj verdi. Bu röportaj, genç bir astrofizik araştırmacı olmanın müfakatları ve zorlukları hakkında insanlara fikir sağladı. Araştırmasını yaptığı uzun yılları, sık sık iş değiştirmesini, çalışma saatlerini ve rekabetçi bir alanda kadın olmanın nasıl bir şey olduğunu anlattı. Ayrıca, günlük yaptığı şeylere dair ilginç bir bakış açısı vardı. Zamanının çok az bir kısmını teleskop kullanarak harcıyor.

Hinkel, Lifehacker’a verdiği röportajda “Zamanımın çok büyük bir kısmını programlamayla uğraşarak geçiriyorum. Pek çok insan astronomların bütün zamanını teleskop kullanarak geçirdiği sanıyor fakat o, işin hiç değilse küçük bir kısmı. Bazı gözlemler yapıyorum fakat son birkaç yılda toplam yaklaşık iki hafta için iki kez gözlem yaptım.” diyor.

“Bir veri aldığında onu kısaltman (örneğin kötü kısımlarını çıkartarak ve onu gerçeğe uygun hale getirerek), diğer verilerle ilişkilendirerek büyük resmi görmen ve daha sonra bulgularını kağıda yazman lazım. Her gözlem çalışması tipik olarak çoklu yıldızlardan veri sağladığından yeterli iş yapmak için tüm zamanınızı teleskopta harcamanıza gerek kalmıyor.”

Kaynakça:

https://www.space.com/26218-astrophysics.html

Yazan: Ahmet Arda Pektaş

Astronomi ve Fizik Alanında Yapılmış En Yaratıcı 5 Deney

Modern evren anlayışımız, yüzyıllar boyunca binlerce yaratıcı ve çalışkan bilim insanı tarafından tasarlanmış ve uygulanmış yüzlerce deney üzerine inşa edilmiştir. Bu deneylerden birkaçının çığır açıcı olmaları ve olayların işleyiş şekilleri hakkındaki görüşümüzü değiştirmeleri nedeniyle ön plana çıkması normal. Fakat hangilerinin evrenin bazı basit gerçeklerini zorla değil de ustalıkla ortaya çıkmasını sağladığını bulmak zor iş.

Ben de bu yazımda sizlere Space.com’un astronomi ve fizik alanında seçtiği en yaratıcı 5 deneyden bahsedeceğim.

İlk ötegezegen

1992 yılında Plüton’un keşfinden 60 yıldan fazla zaman geçmişken astronomlar bizim Güneş sistemimizde olmayan ve başka bir yıldız etrafında dolanan yeni bir gezegen bulmak için can atıyorlardı. Astronomlar, uzak bir yıldızdan gelen ışığı dikkatli bir şekilde inceleyerek herhangi bir gezegenin yörüngesi boyunca ileri ve geri yalpalamasından kaynaklanan, kırmızıya kayma ve maviye kayma adı verilen ışığın dalga boyundaki bariz değişimleri görebileceklerini biliyorlardı.

Ne yazık ki o zamanlar yıldız ışığı hakkında yeterince hassas gözlemlerimiz yoktu. Tek istisna süpernovalardan sonra bazı yıldızlardan arta kalan pulsarlardı. Bu cisimlerin hızla dönen bir nötron yıldızından çıkan radyasyon ışınlarından kaynaklanan ve neredeyse doğal olmayan bir biçimde ortaya çıkan hassas sinyalleri yörüngede dolaşan gezegenlerin kütleçekimsel etkisini tespit etmek için kullanılabilir. Kütle çekim kuvveti pulsar patlamalarının zamanlamasını bilim insanlarının ölçebileceği şekilde değiştirir.

Fakat bir pulsar bir gezegen sistemine nasıl ev sahipliği yapabilirdi? Şüphesiz ki bir yıldızın son günlerindeki şiddeti, çevresinde bulunan herhangi bir yörüngeyi kararsız hale getirecektir. Fakat görünen o ki doğa mantıksal konulara pek önem vermiyor. Örneğin tanımlanan ilk ötegezegen, bir pulsarın (PSR B1257+12) yörüngesi etrafında dönüyordu.

İşte buradaki zekice şey: saptaması zor olan bir şeyi ortaya çıkarmak için doğanın kendisi tarafından üretilen ve garip bir biçimde kesin olan yöntemi kullanmak.

Dünya’nın boyutu

Düşündüğünüzde Dünya’nın yuvarlak olduğunu fark etmek çok fazla zamanınızı almaz. Ayrıca buna kanıt olarak birçok örnek gösterebilirsiniz: denizde gemilerin önce alt taraflarından kaybolmaları, Ay tutulması sırasında Dünya’nın gölgesinin yuvarlak olması, Güney yarım küreden görülen yıldızların Kuzey yarım küreden görülememesi… Eski çağlardaki birçok insan (en azından bu problem hakkında düşünme lüksü olanlar ve buna Yunanlar da dahil) bu gerçeği kabul etmiş görünüyorlardı.

Fakat bu dev küre ne kadar büyüktü?

Bakalım bu konuda Eratosthenes ne diyor? Eratosthenes, MÖ 250 civarında İskenderiye’de yaşayan Yunan bir bilgin. Dünya’nın çevresini şehirden ayrılmasına gerek bile kalmadan çok zekice bir yöntemle hesapladı. Yaz gün dönümü boyunca İskenderiye’de gölge oluştuğunu fakat Mısır’ın güney kısmında yer alan Syene şehrinde (bugünkü Asvan’a yakın bir yerde) gölge oluşmadığını biliyordu.

Eğer Eratosthenes Syene’a olan mesafeyi bilseydi, Dünya tamamen küresel olsaydı, Güneş gerçekten gün dönümü sırasında direk olarak Syene üzerinde olsaydı ve İskenderiye ve Syene kuzey-güney hattı boyunca mükemmel bir şekilde uzansaydı, o zaman İskenderiye’deki gölgelerin uzunluğunu, gün dönümü sırasında iki şehir arasındaki açıyı ve geometri denen bu yeni tekniği kullanarak gezegenin çevresini ölçmek için kullanabilirdi.

Tüm bu koşullar Eratosthenes’in Dünya’nın çevresini yaklaşık 45.000 kilometre (28.000 mil) ölçmesini sağlamış olmalı ki bu değer gerçek değerinden sadece %10 farklı.

Einstein’ın düşünce deneyleri

Bütün deneyler laboratuvarda gerçekleşmez. Bazen de sadece kafanızda hayali bir senaryo kurarsınız, matematiğin sizi sonuca götürmesine izin verirsiniz ve evren hakkında bilgi edinirsiniz. Einstein da bu konuda doğuştan uzmandı.

Einstein’ın deyimiyle onun ilk “gedankenexperiment” (Almanca “düşünce deneyi”) çok genç yaşlarda aklına geldi. Bir ışık demetiyle ışık hızında giden bir bisiklet kullanarak yarışsaydı ne görecekti?

Işık elektromanyetik dalgalardan oluştuğu için, çok hızlı pedal çevirdiğinde bu dalgaları yanında duruyormuş gibi göreceğini düşündü. Fakat elektromanyetik dalgaları hiçbir zaman duruyor olarak göremeyiz. O zaman bunun yerine ışık hızında gitmek imkansızdı. Bu düşünceyi kullanarak ve bir takım matematiksel işlemlerden sonra daha önceden de bildiğiniz gibi özel görelilik kuramını geliştirdi.

Einstein sonraki hayatında da buna benzer bir numara kullandı. Penceresiz bir asansördeyseniz ve biri kabloyu kesip serbest düşüşe geçirdiğinde ne olur? Ölümüne mi düşersiniz yoksa basitçe yer çekimsiz ortamda etrafa tekme mi savurursunuz?

Einstein’ın cevabı şuydu: Aralarındaki farkı söylemek imkânsız. Eylemsiz kütle (bir cismin kendisine etki eden herhangi bir kuvvete verdiği cevap), yer çekimi kütlesiyle aynıdır (bir cismin yer çekimine verdiği tepkinin gücü). Bu basit kavramı ve önemli bir miktarda kütleyi alırsanız ortaya genel görelilik kuramı çıkar.

Millikan’ın yağ damlası deneyi

1909 yılında fizikçiler Robert Millikan ve Harvey Fletcher tarafından gerçekleştirilen bu deney, yaratıcı tasarımı ya da doğayı kendi oyununda alt etme çabaları nedeniyle değil de bunların yerine inşaatının basitliği ve ölçümde yapılan aşırı titizlik nedeniyle o kadar da akıllıca olmadı. Hakkında pek yazı yazılmadığı için de o da bu listede yer alıyor.

O zamanlarda bilim insanları elektrik yükünün var olduğunu biliyorlardı ama hakkında hiçbir şey bilmiyorlardı. Temel yük miktarları var mıydı? Ya da yük miktarı, kütle gibi bir şey miydi? Elektronun yükü neydi?

Millikan ve ortağı, bir haznenin içine elektrikle yüklenmiş yağ damlaları damlatan bir cihaz geliştirdi. Düşen damlalar çok çabucak terminal hızlarına (düşen cisimlerin yer çekiminden dolayı ulaşabilecekleri maksimum hızdır) ulaşırlar. Eğer havanın yoğunluğunu, yağın yoğunluğunu ve yer çekimi ivmesini bilirseniz terminal hızlarını ölçerek yağ damlalarının kütlesini bulabilirsiniz.

Millikan, elektrik alan uygulayarak elektriksel kuvvetle yer çekimi kuvvetinin dengelenmesiyle yağ damlalarını yavaşlatıp havada durdurabilirdi. Böylelikle de her bir damlanın yükünü ölçebilirdi.

Bu ölçümleri birkaç kez tekrarladıktan sonra şu iki sonuca vardı: Tek bir elektronun yükü -1.6×10-19 (bu temel yük) ve tüm yükler bu yük temel alınarak oluşturulmalı (kuarklar ve onların kesirli yükleri hariç ama konumuz bu değil). Bu da demek oluyor ki -1.9×10-19 ve -8.7×10-19 gibi yük değerleri bulamazsınız.

Foucault sarkacı

Nasıl eski çağlarda insanlar daha çok Dünya’nın küreselliği üzerine fikir yürüttüyse 1800’lerin ortalarında da bir şeyler düşünme lüksüne sahip olan insanlar Dünya’nın dönüşü üzerine fikir yürütmüştür. Ama ya bu konu hakkında gerçekten konuşulmamış ya da ne yaptığını bilmeyen insanlar bu konuyla ilgilenmiş.

Fizikçi Léon Foucault bunu değiştirmek istedi ve bunu da başarılı bir şekilde yaptı. Bir sarkaç sallanırken Dünya’nın dönmesine rağmen kendi düzlemini korur. Dünya’nın dönmesine bağlı olarak bizim perspektifimizden yer sabit kalır ve sarkaç gün boyunca yönelimini korur.

1851’de Foucault, Paris’teki Panthéon’da böyle bir sarkaç kurdu. Böylelikle sarkacın yönelimindeki saat yönüne yavaşça olan değişimi (saatte yaklaşık 11,3°) göstererek Dünya’nın döndüğünü ispatladı. Bu medyada büyük olay oldu. Sarkacın tanıtımı bir virüs gibi yayıldı (1800’lerde ne kadar yayılabildiyse o kadar). Çok geçmeden Foucault sarkacı dünya çapındaki bilim sergilerinin temeli oldu.

Heyecan verici! İnsanlar dünyanın dönüşü hakkında konuşuyordu! Ve işte buradaki zekice şey: bilimi erişilebilir hale getirmek ve hakkında konuşulmaya değecek bir şey yapmak.

Kaynakça:

https://www.space.com/36307-5-most-ingenious-experiments.html

Çeviri: Ahmet Arda Pektaş