gokyuzu.org

Karanlık Enerji Garipleşiyor: Gizemli Kuvvet Zamanla Değişebilir

Karanlık enerji, astronomların düşündüğünden de gizemli olabilir.

Bilim adamları ilk olarak, evrenin genişlemesinin hızlandığına dair şaşırtıcı keşfi açıklamak için bu görünmez gücün, yani karanlık enerjinin, varlığını öne sürdüler (Bu bulgu 2011’de üç araştırmacıya Nobel Fizik Ödülü kazandırdı).

Evrimin ve evrenin yapısını açıklamada en çok kullanılan astrofiziksel model karanlık enerjiyi sabit olarak kabul eder. Doğrusu birçok astronom karanlık enerjinin, Einstein’ın 1917’de genel görelilik teorisinin bir parçası olarak gösterdiği kozmolojik bir sabit olduğuna inanmaktadır.

Ancak kuasar olarak bilinen büyük ve parlak kara delikler üzerinde yapılan yeni bir araştırma, karanlık enerjinin kozmolojik sabit ya da herhangi bir sabit olduğu konusunda bir yanlış anlaşılma olabileceğini gösteriyor. Araştırma ekibi üyelerini söylediğine göre, bu güç 13,8 milyar yıl önce evrenin doğumundan bu yana değişmiş olabilir.

Floransa Üniversitesi’nden yazar Guido Risaliti, bir demecinde: “Büyük Patlama’dan sadece bir milyar yıl sonraki kuasarları gözlemledik ve evrenin genişleme hızının o zamandan bu zamana kadar sandığımızdan çok daha hızlı olduğunu tespit ettik. Bu, kozmos büyüdükçe karanlık enerjinin daha da güçleneceği anlamına gelebilir.” dedi.

Kuasarların illüstrasyonu. Telif: G.Risaliti & E.Lusso/Illustration: NASA/CXC/M.Weiss; X-ray: NASA/CXC/Univ. of Florence

Kuasarlar, galaksilerin kalbinde hızla büyüyen süper kütleli karadeliklerdir. Kuasarların inanılmaz parlaklığı -kuasarlar evrendeki en parlak nesnelerdir- karadeliklerin etrafında dönen malzeme disklerinden kaynaklanır. Bu hızla dönen diskler, yakındaki sıcak gaz bulutlarında elektronlara çarpan yüksek miktarda ultraviyole (UV) ışığı üretir. Bu tür etkileşimler, UV ışınımını X ışını seviyesine yükselterek yüksek enerjili ışığın birden fazla dalga boyunda güçlü bir parlama oluşturur.

Risaliti ve Durham Üniversitesi’nden Elisabetta Lusso’nun belirlediğine göre, bu iki ışık türü arasındaki ilişki bir kuasara olan mesafeyi ortaya çıkarabilir. Yeni çalışmada ikili, bu ilişkiyi yaklaşık 1600 kuasarda incelemiştir. Bunu yaparlarken kuasarların X ışını ışığını gözlemlemek için NASA’nın Chandra X-Işını Gözlemevi’ni ve Avrupa Uzay Ajansı’nın XMM-Newton Uzay Aracı’nı kullandılar; ayrıca nesnelerin UV ışığı çıkışını analiz etmek için yer tabanlı Sloan Dijital Gökyüzü Araştırması’nı da çalışmalarına dahil ettiler.

Risaliti ve Lusso, birçok kuasarın inanılmaz derecede uzak olduğunu tespit etti. Örneğin bize en uzakta bulunan kuasar, Büyük Patlama’dan yalnızca 1,1 milyar yıl sonra kozmosa büyük miktarda ışık yaymaktaydı.

Evren’in genişleme oranı üzerine önceki çalışma -1990’ların sonunda karanlık enerji kavramını tanıtan çalışmalar da dahil olmak üzere- genellikle süpernova patlamalarının “standart mumlar” olarak gözlemlenmesine dayanıyordu. Araştırmacılar, gerçek parlaklığı bilinen bu nesnelere olan uzaklığı belirlediler ve ışıklarının ne kadar “kırmızıya kaydığını” analiz ederek (daha uzun dalga boyuna gererek) Dünya’ya göre ne kadar hızlı hareket ettiğini belirlediler.

Süpernovalar, daha güçlü ve etkileyici olsalar da kuasarlardan çok daha az parlaklığa sahiptirler ve bu sebeple çok uzaktan gözlemlenemezler. Bu nedenle bu yeni çalışma araştırmacılara daha geniş bir zaman diliminde evrenin genişlemesini belirlemek için kullanılabilecek “başka bir” standart mum veriyor.

Ancak yine de Risaliti ve Lusso bazı süpernova ölçümlerine de baktı.

Lusso, “Bu yeni bir teknik olduğundan, bu yöntemin bize güvenilir sonuçlar verdiğini göstermek için fazladan adımlar attık.” Dedi. “Tekniğimizden elde ettiğimiz sonuçlarla 9 milyar yıl önceki süpernovaların ölçümlerinden elde ettiğimiz sonuçların eşleştiğini gösterdik, bu da sonuçlarımızın önceki sonuçlarda bile inanılır olduğuna dair bize güven verdi.”

Chandra X-Işını Gözlemevi’nin görüntülediği, bir karadeliğin dönüş hızını hesaplayarak karanlık enerjiye dair bilgiler elde etmek için PSS 0955+5940 objesine ait kare. Telif: NASA/CXC/Univ. of Florence/G.Risaliti & E.Lusso

Yeni sonuçlar, nispeten yakınlardaki süpernovaların daha önceki gözlemleriyle tutarlı. Önceki çalışma, görünüşe göre erken evreninkine kıyasla (Büyük Patlama’dan kalan eski ışık, mikrodalga arkaplanın ölçümlerinden türetildiği gibi) açıkça hızlandırılmış bir genişleme oranı buldu.

Risaliti, “Bazı bilim insanları, karanlık enerjini gücünün artması olasılığını da içeren bu tutarsızlığı açıklamak için yeni bir fizik gerekebileceğini öne sürdüler. Yeni sonuçlarımız bu öneriyle aynı fikirde.” dedi.

Yeni çalışma 28 Ocak Pazartesi günü Nature Astronomy dergisinde çevrimiçi olarak yayınlandı. Çevrimiçi yayın sitesi arXiv.org’ta ücretsiz olarak okuyabilirsiniz.

Kaynak: SPACE.COM

Çeviri: Buğra Güneş

Astronomi Nedir?

İnsanlar uzun zaman boyunca göklere baktı, etraflarındaki evrene bir anlam ve düzen katmak için araştırma yaptılar. Takımyıldızların -gökyüzü üzerine rastgele serpilmiş yıldızların kolayca ayırt edilebilmesi için düşünülen kümeler- hareketi izlenmesi en kolay olanı olsa da tutulmalar ve gezegenlerin hareketi gibi diğer göksel olaylar da tahmin edildi ve belirlendi.

Astronominin Tanımı

Astronomi güneş, ay, yıldızlar, gezegenler, kuyruklu yıldızlar, gazlar, galaksiler, tozlar ve diğer Dünya dışı cisim ve olgular üzerinde çalışan bilim dalıdır. K-4 öğrencileri için müfredatta NASA astronomiyi basit olarak “yıldız, gezegen ve uzay incelemesi” olarak tanımlar. Astronomi ve astroloji tarihsel olarak ilişkilendirilmiştir, ancak astroloji bir bilim değildir ve artık astronomi ile ilgisi olmadığı kabul edilmektedir.

Aşağıda, astronomi tarihi ve kozmoloji de dahil olmak üzere ilgili çalışma alanlarını tartışacağız.

NGC 7026, bir gezegenimsi bulutsu. Telif: ESA/Hubble & NASA

Tarihsel olarak astronomi, göksel cisimlerin gözlemine yoğunlaşmıştır. Astrofizik de buna yakın bir işle uğraşır. Özetle astrofizik, astronomi fiziğinin çalışmalarını içerir ve uzaydaki nesnelerin hareketi, davranışı ve özelliklerine odaklanır. Bununla birlikte modern astronomi, bu nesnelerin hareketlerinin ve özelliklerinin birçok unsurunu içerir ve bu iki terim günümüzde genellikle birbirleri yerine kullanılır.

Modern astronomlar iki farklı alana eğilim göstermişlerdir: Teorik ve Gözlemsel.

  • Gözlemsel Astronomlar direkt olarak yıldızların, gezegenlerin, galaksilerin vb. üzerinde çalışırlar.
  • Teorik Astronomlar sistemlerin nasıl evrimleşmiş olabileceğini analiz eder ve modellerler.

Diğer bilim alanlarının aksine, astronomlar bir sistemi tamamen doğumundan ölümüne kadar gözlemleyemezler; yıldızların, Dünya’nın ve galaksilerin ömrü milyarlarca yıl sürüyor. Bunun yerine astronomlar, cisimlerin nasıl oluştuklarını, geliştiklerini ve öldüklerini belirlemek için evrimlerinin çeşitli evrelerindeki anlık görüntülere güvenmek zorundalar.   Bu nedenle, teorik ve gözlemsel astronomi bir araya gelme eğilimindedir, çünkü teorik bilim insanları simülasyon oluşturmak için, toplanan bilgileri kullanırken; gözlemler, modellerin onaylanmasının ya da düzeltilmesinin belirlenmesinde görev alır.

Astronomi, bilim insanlarının belirli nesnelerde uzmanlaşmasına izin veren bir dizi alt alanlara ayrılmıştır.

Jüpiter’deki büyük kırmızı leke. Telif: Credit: Christopher Go via NASA

 Gezegensel astronomlar (gezegen bilimciler olarak da adlandırılırlar) gezegenlerin büyümesi, evrimi ve ölümüne odaklanırlar. Birçoğu güneş sistemi içindeki dünyaları incelerken, bazıları da diğer yıldızların etrafındaki gezegenlerin neye benzediğini tahmin etmek için giderek büyüyen kanıtları kullanırlar. University College London’a göre, gezegen bilimi “astronomi, atmosfer bilimi, jeoloji, uzay fiziği, biyoloji ve kimya gibi konuları içeren disiplinler arası bir alandır.”

 Yıldız astronomları gözlerini yıldızlara, karadeliklere, bulutsulara, beyaz cücelere ve yıldız ölümlerinden geriye kalan süpernovalara çevirirler. Kaliforniya Üniversitesi, Los Angeles, “Yıldız astronomisinin odak noktası evrende meydana gelen fiziksel ve kimyasal süreçler üzerinedir” diyor.

Güneş’in aktif bölgesi 10030, 15 Temmuz 2002. Telif: Royal Swedish Academy of Sciences

 Güneş astronomları zamanlarını tek bir yıldızın(güneşimizin) analizini yaparak geçirirler. NASA’ya göre “Güneşten gelen ışığın miktarı ve kalitesi, zaman ölçeklerinde milisaniyeden milyarlarca yıla kadar değişiyor.” Bu değişiklikleri anlamak, bilim insanlarının Dünya’nın nasıl etkilendiğini fark etmesine yardımcı olabilir. Güneş ayrıca diğer yıldızların nasıl çalıştığını anlamamıza yardımcı olur çünkü güneş, yüzeyiyle ilgili detayları ortaya çıkarabilecek kadar bize yakın olan tek yıldız.

 Galaktik astronomlar galaksimiz Samanyolu üzerinde çalışırken, ekstragalaktik (Samanyolu’nun dışında olan) astronomlar Samanyolu’nun dışında kalan yıldızların nasıl oluştuğunu, değiştiğini ve öldüğünü saptarlar. Wisconsin-Madison Üniversitesi “Dağılımları, yapısal içerikleri ve içindeki yıldızlarla gaz bulutlarının fiziksel yapıları, sürekli evrilen Gökadamızın tarihi hakkında iz sürmemizi sağlıyor” diyor.

 Kozmologlar evreni bütün olarak ele alırlar. Büyük patlamadaki doğumundan evrimine ve nihai olarak ölümüne kadar… Astronomi, her zaman olmasa da sıklıkla somut, gözlemlenebilir şeyler hakkındayken; kozmoloji ise genellikle evrenin geniş çaplı özelliklerini, sicim teorisi gibi ezoterik, görünmez ve bazen teorik şeyleri, karanlık madde, karanlık enerji ve çoklu evrenler kuramını içerir.

Astronomik gözlemciler, evrendeki nesneleri geniş mesafede incelemek için, elektromanyetik spektrumda farklı dalga boylarına (radyo dalgalarından görünür ışığa, X ışınlarına ve gama ışınlarına) güvenirler. İlk teleskoplar, çıplak gözle ne görülebilecekse, bunun üzerine basit optik çalışmalara odaklandı ve hala birçok teleskop buna devam ediyor.

Ancak ışık dalgaları çok ya da az enerjik hale geldikçe, daha hızlı veya daha yavaş hareket ederler. Farklı dalga boylarını incelemek için farklı teleskoplar gereklidir. Kısa dalga boyuna sahip yüksek enerjili ışınımlar, ultraviyole, X ışını ve gama ışını şeklinde görünürken; daha enerjili olanlar daha uzun dalga boylu kızılötesi ve radyo dalgaları yayar.

 Astrometri (Gök ölçümü) GüneşAy ve gezegenlerin ölçüsü olan, astronominin en eski koludur. Gök cisimlerinin hareketlerinin kesin olarak hesaplanması, diğer alanlardaki astronomların, gezegenlerin ve yıldızların doğuşunu ve evrimini modellemesine ve meteor yağmurları ile kuyruklu yıldızların görüneceği zamanın tahmin edilmesine olanak sağlar. Planetary Society’ye göre, “Astrometri güneşdışı gezegenleri tespit etmek için kullanılan eski bir yöntemdir”, buna rağmen işlemesi zor bir süreçtir.

 İlk astronomlar gökyüzündeki desenleri fark ettiler, hareketlerini izlemek ve tahmin etmek için bunları bir düzene koymaya çalıştılar. Takımyıldızları olarak bilinen bu desenler, geçmişte yaşayan insanların mevsimleri öğrenmelerine yardımcı oldu. Yıldızların ve diğer göksel cisimlerin hareketi, Çin, Mısır, Yunanistan, Mezopotamya ve Hindistan başta olmak üzere dünya çapında takip edildi.

Astronomun tasviri, gece teleskop başında yalnız bir ruh gibi düşünülmüştür. Ancak günümüzdeki en zorlu astronomi, bilgisayarlar ve bilgisayarlardan gelen veri ve görüntüler üzerinde çalışan astronomlar tarafından kontrol edilen uzaktaki teleskoplarla -yeryüzündeki veya gökyüzündeki- yapılır.

Fotoğrafçılığın ve özellikle dijital fotoğrafçılığın gelişinden bu yana astronomlar, sadece bilimsel olarak bilgi veren değil insanları büyüleyen inanılmaz fotoğraflar ortaya çıkardılar.

Astronomlar ve uzay uçuşu programları, kendi görevleri başladığında dışarıdan (Ay ya da ötesi) Dünya’ya bakıp Dünya’nın harika fotoğraflarının çekilmesine katkı sağladılar.

Kaynak:

https://www.space.com/16014-astronomy.html

Yazan: Buğra Güneş

Astrofizik Nedir?

Astrofizik nedir?

Astrofizik; fizik ve kimya kanunlarının yardımıyla yıldızlar, gezegenler, galaksiler, bulutsular ve evrendeki diğer nesnelerin doğumu, yaşamı ve ölümünü açıklayan uzay bilimi dalıdır. Astrofizik; astronomi ve kozmolojiyle sürekli bir etkileşim içindedir.

En kalıplaşmış şekilde:

  • Astronomi; pozisyonları, aydınlatma güçlerini, hareketleri ve diğer karakteristik özellikleri ölçer.
  • Astrofizik evrendeki küçük ila orta büyüklükteki yapılar hakkında fiziksel teoriler oluşturur.
  • Kozmoloji ise bunu evrendeki en büyük yapılar ve tüm evren için yapar.

Uygulamada bu alanlar birbirlerine sıkıca kenetlenmiştir. Bir bulutsunun pozisyonunu ya da hangi tür ışık yaydığını sorun, astronom daha önce cevap verebilir. Bulutsunun hangi maddeden ve nasıl oluştuğunu sorun, astrofizikçi konuşmaya başlayacaktır. Verilerin evrenin oluşumuyla nasıl uyduğunu sorun, kozmolog soruya önce atlayacaktır. Fakat dikkat edin,  bu sorulardan herhangi biri için ikisi ya da üçü hemencecik konuşmaya başlayacaktır.

Astrofiziğin hedefleri

Astrofizikçiler evreni ve evrendeki yerimizi anlamaya çalışır. NASA’nın internet sitesine göre NASA’daki astrofizikçilerin hedefleri evrenin nasıl işlediğini keşfetmek, nasıl başladığı ve geliştiğini araştırmak, diğer yıldızların etrafındaki gezegenlerde yaşam aramaktır.

NASA bu hedeflerin 3 geniş soru ürettiğini belirtiyor:

  • Evren nasıl işliyor?
  • Biz buraya nasıl geldik?
  • Yalnız mıyız?

Newton’la başladı

Astronomi en eski bilimlerden biri iken teorik astrofizik Isaac Newton’la başladı. Newton’dan önce astronomlar gök cisimlerinin hareketlerini  fiziksel bir temel olmadan kompleks matematik modeller kullanarak açıklıyorlardı. Newton uydu ve gezegenlerin yörüngelerini ve Dünya’da atılan bir güllenin izlediği yolu aynı anda açıklayan tek bir teori olduğunu gösterdi. Bunun sonucunda Dünya ve gökyüzü için aynı fiziksel kanunların geçerli olduğunu şaşırtıcı bir şekilde kanıtladı.

Muhtemelen Newton’un modelini diğer önceki modellerden ayıran özellik öngörücü olmakla beraber betimleyici olmasıdır. Uranüs’ün yörüngesindeki sapmalara dayanarak astronomlar yeni bir gezegenin pozisyonunu öngördü, yapılan gözlemlerden sonra bu gezene Neptün adı verildi. Öngörücü olmakla beraber betimleyici olmak bir modern bilim işareti ve astrofizik de bu kategoride.

Astrofizikteki dönüm noktaları

Uzaktaki cisimlerle etkileşime geçmenin tek yolu yaydıkları radyasyonu gözlemlemektir. Çoğu astrofizikçi bunu radyasyon üreten mekanizmaları açıklayan teoriler ortaya çıkararak ve bundan en fazla bilgiyi nasıl çıkaracağımızla ilgili fikirler sağlayarak yapmak zorunda. Yıldızların doğasıyla ilgili ilk fikirler, 19. yüzyılın ortalarında, çiçeği burnunda bir bilim olan spektral analizden elde edilmiştir. Spektral analiz, belirli maddelerin ısıtıldıklarında absorbe ettikleri ve yaydıkları belirli ışık frekanslarını gözlemlemedir. Spektral analiz, hem yeni teorileri yönlendiren hem de test eden uzay bilimleri üçlüsü için önemlidir.

İlkel spektroskopi, yıldızlarda da Dünya’da bulunan maddeler olduğunu ilk kanıtlayan çalışmaydı. Spektroskopi, bazı bulutsuların tamamen gaz halindeyken bazılarının ise yıldız içerdiğini gösterdi. Bu daha sonra, bazı bulutsuların aslında bulutsu olmadığı fikrini pekiştirdi. Peki onlar neydi? Onlar başka galaksilerdi!

1920’lerin başlarında, Cecilia Payne, spektroskopi kullanarak yıldızların ağırlıklı olarak hidrojenden oluştuğunu (en azından yaşlılıklarına kadar) keşfetti. Ayrıca yıldızların spektrumları astrofizikçilere yıldızların Dünya’ya doğru ya da Dünya’dan uzağa ne kadar hızla hareket ettiklerini belirlemelerine yardımcı oldu. Doppler kayması nedeniyle, bir aracın yaydığı sesin bize doğru gelirken ya da bizden uzaklaşırken değişmesi gibi yıldızların spektrumları da aynı şekilde değişecektir. 1930’larda Edwin Hubble, Doppler kayması ve Einstein’ın genel görelilik teorisini birleştirerek evrenin genişlediğine dair sağlam kanıtlar bulmuştur. Bu Einstein’ın teorisi tarafından da öngörülüyordu ve birlikte Big Bang Teorisinin temelini oluşturuyorlar.

Ayrıca 19. yüzyılın ortalarında, fizikçiler Lord Kelvin (William Thomson) ve Gustav Von Helmholtz, kütleçekimsel çökmenin Güneş’e güç sağlayabileceği tahmininde bulundular, fakat eninde sonunda bu şekilde üretilen enerjinin sadece 100.000 yıl yeteceğini fark ettiler. Elli yıl sonra, Einstein’ın ünlü E = mc2 denklemi, astrofizikçilere, gerçek enerji kaynağının ne olabileceğine dair ilk kanıtı sundu (her ne kadar kütleçekimsel çökmenin önemli bir rol oynadığı ortaya çıksa da). Nükleer fizik, kuantum mekaniği ve parçacık fiziği, 20. yüzyılın ilk yarısında gelişmesinden dolayı nükleer füzyonun yıldızlara nasıl güç sağlayabileceğine dair teorileri formüle etmek mümkün hale geldi. Bu teoriler, yıldızların nasıl oluştuğunu, yaşadığını ve öldüğünü tanımlıyor ve aynı zamanda yıldız türlerinin spektrumları, aydınlatma güçleri, yaşları ve diğer özelliklerinde gözlenen dağılımı başarılı bir şekilde açıklar.

Astrofizik, yıldızların ve evrendeki diğer uzaktaki cisimlerin fiziğidir, fakat aynı zamanda Dünya’ya da yakındır. Big Bang Teorisine göre, ilk yıldızlar neredeyse tamamen hidrojenden oluşuyordu. Onlara enerji sağlayan nükleer füzyon süreci, daha ağır bir element olan helyumu oluşturmak için hidrojen atomlarını çarpıştırır. 1957 yılında, ikisi de astronom olan karı koca Geoffrey ve Margaret Burbidge, fizikçi William Alfred Fowler ve Fred Hoyle ile birlikte yıldızların yaşlandıkça nasıl daha da ağır olan elementleri oluşturduğunu gösterdiler. Sadece daha yakın tarihli yıldızların yaşamlarının son aşamalarında, Dünya’yı oluşturan elementlerin(örnek olarak demir (%32,1), oksijen (%30,1), silisyum (%15,1)) üretildiği görülmektedir. Bu elementlerden biri olan karbon, oksijen ile birlikte, biz de dahil olmak üzere tüm canlıların en önemli kısmını oluşturuyor. Böylelikle, astrofizik tamamen yıldız olmasak da tamamen yıldız tozundan olduğumuzu bize söylüyor.

Kariyer olarak astrofizik

Astrofizikçi olmak için yıllarca gözlem yapmak, çalışmak ve deneyim kazanmak gerekiyor. Fakat ortaokul ve lisede bile astronomi kulüplerine katılarak, yerel astronomi etkinliklerine giderek, astronomi ve astrofizik alanında ücretsiz çevrimiçi dersler alarak ve Space.com gibi web sitelerindek ilgili haberleri takip ederek az da olsa işin içine girebilirsiniz.

Üniversitede öğrenciler astrofizikte doktora yapmayı ve daha sonra astrofizikte doktora sonrası bir pozisyonda görev almayı hedeflemelidir. Astrofizikçiler devlette, üniversite laboratuvarlarında ve bazen de özel organizasyonlarda çalışabilirler.

Study.com, astrofizikçi olma yolunda ilerlemeniz için aşağıdaki adımları önermektedir:

Lise boyunca matematik ve fen dersleri alın. Çok çeşitli fen dersleri aldığınızdan emin olun. Astronomi ve astrofizik, evrendeki fenomenleri daha iyi anlamak için sık sık biyoloji, kimya ve diğer bilimlerin öğelerini birleştirir. Ayrıca matematik ve fen alanında herhangi bir yaz işini veya stajı göz önünde bulundurun. Gönüllü çalışma öz geçmişinizi desteklemede yardımcı olabilir.

Matematik ya da fenle ilgili bir lisans derecesine devam edin. Astrofizikte lisans ideal olmasına karşın o alana başka birçok yol var. Bilgisayar bilimlerinde ön lisans ve lisans eğitimi alabilirsiniz. Örneğin bu, verileri analiz etmenize yardımcı olmanız önemlidir. Hangi programların size yardımcı olabileceğini öğrenmek için lise rehberlik danışmanı veya yerel üniversitenizle konuşmak en iyi yoldur.

Araştırma fırsatlarından yararlanın. Pek çok üniversitede öğrencilerin keşiflere katılabildiği ve hatta bazen bu çalışmaların yayınlandığı laboratuvarlar vardır. NASA gibi ajanslar da zaman zaman staj imkanı sunuyor.

Astrofizikte doktora yapın. Doktora meşakatli bir yol fakat ABD İşçi İstatistikleri Bürosu, astrofizikçilerin büyük çoğunluğunun doktora yaptığını belirtiyor. Geniş bir bilgi tabanına sahip olmak için astronomi, bilgisayar bilimi, matematik, fizik ve istatistik dersleri aldığınızdan emin olun.

2015 yılında, o zamanlar Arizona Eyalet Üniversitesinde olan gezegensel astrofizikçi Natalie Hinkel Lifehacker’a ayrıntılı bir röportaj verdi. Bu röportaj, genç bir astrofizik araştırmacı olmanın müfakatları ve zorlukları hakkında insanlara fikir sağladı. Araştırmasını yaptığı uzun yılları, sık sık iş değiştirmesini, çalışma saatlerini ve rekabetçi bir alanda kadın olmanın nasıl bir şey olduğunu anlattı. Ayrıca, günlük yaptığı şeylere dair ilginç bir bakış açısı vardı. Zamanının çok az bir kısmını teleskop kullanarak harcıyor.

Hinkel, Lifehacker’a verdiği röportajda “Zamanımın çok büyük bir kısmını programlamayla uğraşarak geçiriyorum. Pek çok insan astronomların bütün zamanını teleskop kullanarak geçirdiği sanıyor fakat o, işin hiç değilse küçük bir kısmı. Bazı gözlemler yapıyorum fakat son birkaç yılda toplam yaklaşık iki hafta için iki kez gözlem yaptım.” diyor.

“Bir veri aldığında onu kısaltman (örneğin kötü kısımlarını çıkartarak ve onu gerçeğe uygun hale getirerek), diğer verilerle ilişkilendirerek büyük resmi görmen ve daha sonra bulgularını kağıda yazman lazım. Her gözlem çalışması tipik olarak çoklu yıldızlardan veri sağladığından yeterli iş yapmak için tüm zamanınızı teleskopta harcamanıza gerek kalmıyor.”

Kaynakça:

https://www.space.com/26218-astrophysics.html

Yazan: Ahmet Arda Pektaş