Keşfedilecek gizemlerle dolu olan evrende, kara delikleri hepimizi heyecanlandıran oluşumlar arasında saymamız mümkündür. Bilim insanları tarafından yürütülen çalışmalar sonucunda kara delikler hakkında birçok yeni bilgiler ortaya çıkartılıyor.
Orta kütleli kara delikler, kara delik evriminin uzun zamandır aranan kayıp parçalarıdır. Öncesinde bu sınıfa aday kara delikler olsa da, araştırmacılar yeni gözlemlerin bu zamana kadarki en büyük delil olduğunu düşünüyorlar. Güneşimizin 50.000 katı olan bu yeni kara delik, büyük galaksilerin merkezlerinde gördüğümüz süper kütleli kara deliklerden küçük (bu kara delikler milyonlarca veya milyarlarca Güneş kütlelidir); büyük kütleli yıldızların patlaması sonucu oluşan kara deliklerden ise büyüktür.
“Orta kütleli kara delikler bulunması zor cisimlerdir ve bu yüzden her aday için alternatif açıklamaları dikkatli bir şekilde değerlendirip elemek büyük önem taşır. Hubble’ın adayımıza yapmamızı sağladığı şey tam da budur.” diyor New Hampshire Üniversitesinden Danheng Lin, kendisi aynı zamanda çalışmanın başlıca araştırmacılarındandır.
Lin ve takımı, NASA’nın Chandra X-ışını Gözlemevinden ve Avrupa Uzay Ajansı’nın X-ışını Çoklu Ayna Misyonundan (XMM-Newton) gelen bilgileri takip etmek için Hubble’ı kullandı. 2006 yılında, bu yüksek enerji uyduları güçlü bir X-ışını ışıması tespit ettiler; fakat bu ışımanın kaynağının galaksimizin içinde mi yoksa dışında mı bulunduğu belli değildi. Araştırmacılar, ışımanın sebebini tıpkı kara delik gibi güçlü kütle çekimine sahip bir cismin çok yakınına gelen bir yıldızın parçalanmasına dayandırdılar.
“Detaylı X-ışını gözlemlerini eklemek toplam enerji çıktısını anlamamızı sağladı.” diyor takım üyesi Natalie Webb, Fransa Toulouse Üniversitesinden. “Bu sayede kara delik tarafından parçalanan yıldızın türünü anlayabiliyoruz.”
Şaşırtıcı şekilde, 3XMM J215022.4-055108 isimli X-ışını kaynağı herhangi bir galaksinin merkezinde değildi. Bu durum, süper kütleli bir kara delik bulma ihtimalini elerken, orta kütleli bir kara delik keşfedilmesi yönündeki umutları artırıyordu. Yine de bir sonuca ulaşmak için erkendi çünkü elenmesi gereken başka bir ihtimal vardı: galaksimizde bulunan ve soğumaya başlayan bir nötron yıldızı.
Hubble, kaynağın yerini net bir şekilde belirleyebilmek için ona doğru çevrildi. Derin ve yüksek çözünürlüklü görüntüleme, X-ışınlarının galaksimizde bulunan izole bir kaynaktan değil de başka bir galaksinin kenarlarında bulunan uzak, yoğun bir yıldız kümesinden geldiğini saptadı; tıpkı astronomların orta kütleli kara delik bulmayı bekledikleri türden bir yerde. Geçmişteki Hubble araştırmaları bir galaksi ne kadar büyükse merkezindeki kara deliğin de o kadar büyük olacağını ortaya koymuştu. Bu sebeple, X-ışını kaynağının bulunduğu yıldız kümesi, şu an ona ev sahipliği yapan büyük galaksinin kütle çekimi sonucu dağılan cüce bir galaksinin merkezinden geriye kalan bir parça olabilir.
Orta kütleli kara delikler, süper kütleli kara deliklerden daha küçük ve daha az aktif oldukları için bulması zor kara deliklerdir. Ne çabucak erişebilecekleri yakıtları vardır ne de, X-ışını yaymaları ile sonuçlanacak olan, sürekli olarak yıldızları ya da diğer kozmik nesneleri çekmeye yetecek kadar güçlü kütle çekimleri. Dolayısıyla, astronomlar orta kütleli bir kara deliği saptayabilmek için onu, bu nadir de olsa, bir yıldızı yerken yakalamalılar.
Lin ve takım arkadaşları, yüz binlerce kaynak arasından bu orta kütleli kara delik adayı ile ilgili bir kanıt bulabilmek için XMM-Newton arşivlerini araştırdılar. Parçalanan yıldızdan yayılan X-ışınları astronomların kara deliğin kütlesini hesaplamalarını sağladı. Bu hesap, X-ışınının parlaklığına ve spektrum şekline bakılarak yapıldı.
Bahsettiğimiz orta kütleli kara delik adayı, bu zamana kadar düşünülen muhtemel adaylardan ilki değil. 2009 yılında Hubble, NASA’nın Swift Gözlemevi ve ESA’nın XMM-Newton gözlemevi ile beraber, başka bir orta kütleli kara delik adayını saptamak için çalıştı. HLX-1 olarak adlandırılan bu aday, ESO 243-49 adlı bir galaksinin kenarlarında; yine cüce bir galaksinin merkezinden geriye kalmış olabilecek mavi yıldızlardan oluşan genç ve büyük bir yıldız kümesinde bulunuyordu. X-ışınları, bir kara delik etrafındaki toplanma diskinden gelirler. “Buradaki büyük fark cismimizin bir yıldızı parçalamasıdır. Bu durum onun HLX-1 gibi önceki adaylarda şüphelendiğimiz şekilde yıldız kaynaklı bir kara delik olması yerine orta kütleli bir kara delik olabileceği yönünde güçlü bir kanıt sunuyor.” diyor Lin.
Bu orta kütleli kara deliği bulmak, karanlık içinde henüz tespit edilememiş bir şekilde gizlenen ve açığa çıkmak için çok yakınından geçecek olan bir yıldızı bekleyen nicelerinin bulunma ihtimaline kapıyı aralıyor.
“Orta kütleli kara deliklerinin kökenini ve gelişimini araştırmak sonunda bize çok büyük galaksilerin merkezlerinde gördüğümüz süper kütleli kara deliklerin nasıl oluştuğu konusunda cevap verecektir.” diye ekliyor Webb.
Lin, takımının başarısını kanıtladığı metotları kullanarak, ayrıntılı çalışmalarını sürdürmeyi planlıyor. Geride cevaplanmayı bekleyen birçok soru var. Bir süper kütleli kara delik, orta kütleli kara delikten mi oluşuyor? Orta kütleli kara delikler nasıl oluşuyor? Yoğun yıldız kümeleri en çok bulundukları yer mi?
Astrofizikçiler, gök adaların oluşumları ve evrimleri hakkında yeni bilgilere ulaştı.
Astrofizikçiler; kara deliklerin, karanlık maddenin dağılımını nasıl etkilediğini, ağır metallerin nasıl oluştuğunu ve evrende dağıldığını, ve manyetik alanların nerede başladığını hesapladılar. Bunu mümkün kılmak için geliştirilen yeni evren simülasyonu, şu ana kadar yapılmış en geniş kapsamlı simülasyon olma özelliğini taşıyor.
Çökmüş karanlık madde yapılarının (turuncu ve beyaz renklerde) etrafındaki kozmik gazların (mavi renkte) içindeki şok dalgalarının yoğunluğunun gösterimi.
Ses patlamasına benzer bir şekilde, şok dalgalarının içindeki gazlar, kozmik ipliklere ve gök adalara çarparken, oluşan sarsıntıyla ivmelenirler. Her gök adanın merkezinde bir süper kütleli kara delik bulunur. Yeni bir bilgisayar modeli ise, bu kütleçekim canavarlarının, evrenimizi ne denli büyük bir ölçüde etkilediğini gösteriyor. Araştırma ekibinde ise, Heidelberg Enstitüsü (Heidelberg Institute for Theoretical Studies / HITS), Max-Planck Astronomi ve Astrofizik Enstitüsü (Max-Planck-Institutes for Astronomy and for Astrophysics / MPIA, Heidelberg / MPA, Garching), Birleşik Devletler’in Massachusetts Teknoloji Enstitüsü (Massachusetts Institute of Technology / MIT), Harvard Üniversitesi (Harvard University) ve New York’taki Bilgisayımsal Astrofizik Merkezi’nden gelen bilim insanlarından oluşuyor. Yürüttükleri simülasyon “Illustris — The Next Generation” (IllustrisTNG), şu ana kadar yapılmış en geniş kapsamlı simülasyon olma özelliğini taşıyor. Basit fizik yasalarına dayanan bu simülasyoni evrenimizin Büyük Patlama’dan beri nasıl evrimleştiğini gösteriyor. Ondan önceki Illustris projesine ek olarak IllustrisTNG, bu evrimleşmede önemli rol oynayan fiziksel süreçleri içinde barındırıyor. IllustrisTNG’nin ilk bulguları “Monthly Notices of the Royal Astronomical Society” dergisinde 3 makale olarak paylaşıldı. Bu bulgular, kozmolojinin temel sorularını cevaplanmasında yardımcı olabilir.
Bilgisayardan Gerçekçi Bir Evren
IllustrisTNG’nin tahminince, kozmik gaz ağlarının ve karanlık maddenin birleşme noktalarındaki gök adaların boyutu ve şekli, gerçek gök adalarınkiyle benzer. Tarihte ilk defa, hidrodinamiksel simülasyonlar uzaydaki gök adaların ayrıntılı kümelenme modellerini hesaplayabilir. En yeni araştırmalarla birlikte, gözlemsel verilerin karşılaştırılmasıyla, IllustrisTNG’nin yüksek derecedeki gerçekçiliği ortaya çıkıyor. Bununla beraber, simülasyonlar, özellikle karanlık madde kozmosunun ‘omurgası’ konusunda, kozmik ağların zamanla nasıl değiştiğini de tahmin ediyor. Heidelberg Üniversitesi’nden Prof. Volker Springel şöyle diyor:
“Büyük ölçekte süper kütleli kara deliklerin maddenin dağılımındaki etkisinin bu denli kesinlikle tahmin edilmesi çok heyecan verici. Bu, ileride kozmolojik hesaplamaların doğruluğu için çok önemli.”
Gök adaların yaşamları boyunca yaşanan en önemli değişim
Bir başka araştırmada Dr. Dylan Nelson (MPA), kara deliklerin gök adalara olan önemli etkileri ortaya koydu. İçinde bulunan genç yıldızların yaydığı ışıkla mavi renkte parıldayan gök adalarda meydana gelen ani bir değişim yıldız oluşumunu sonlandırır, bundan dolayı da gök adanın içi yaşlı, kırmızı yıldızlarla kaplanır, ve “kırmızı ve ölü” gök adalarla dolu bir mezarlığa katılır. Dr. Nelson, bu olayı şöyle açıklıyor:
“Geniş eliptik gök adalardaki yıldız oluşumlarını durdurabilecek tek fiziksel varlık, merkezlerindeki süperkütleli kara deliklerdir. Bu kütleçekim tuzaklarının yarattığı boşalmaların hızı, ışık hızının yüzde onuna ulaşır; görece küçük kara delikten milyarlarca kat büyük yıldız sistemlerini etkileyebilir.”
Yıldızların parladığı yer: Gök adaların yapıları hakkında yeni bulgular
IllustrisTNG, araştırmacıların gök adaların oluşumundaki düzeni daha iyi anlamasını sağlıyor. Kuramcılara göre, ilk önce oluşan küçük gök adalar, kütleçekim etkisiyle birleşerek daha büyük nesnelere dönüşüyor. Gök adaların çarpışması, bazı gök adaları parçalıyor ve içindeki yıldızları, merkezi yeni oluşmuş büyük gök adalar olmak üzere, geniş yörüngelere oturtuyor. Tahmin edilen bu solgun yıldız çemberleri düşük yüzey parlaklığından dolayı gözlemlenmeleri çok güç, fakat IllustrisTNG astronomların hangi verilere bakmaları gerektiğini tamamen gösterdi. IllustrisTNG hakkındaki çalışmaları yürüten Dr. Annalisa Pillepich (MPIA) bunu şu şekilde açıklıyor:
“Artık tahminlerimiz düzenli bir biçimde gözlemciler tarafından denetleniyor. Bu da onu gök adalarınn oluşma düzeni hakkındaki kuramsal modelin önemli bir denetleyci haline getiriyor.
Özel kodlu astrofizik ve süper bilgisayar
Araştırmacılar proje için AREPO adlı yüksek ölçüde paralel hareketli ağ kodunun daha güçlü bir versiyonunu geliştirdi ve bunu Almanya’nın Stuttgart şehrindeki Yüksek Performansla Hesaplama Merkezi’nde bulunan en hızlı 19. anaçatı bilgisayarlar olan Hanzel Hen makinesinde kullandılar. IllustrisTNG, kozmik yapıların oluşumunu incelemek için oluşturulan şu ana kadarki en büyük hidrodinamik simülasyon. İki ana simülasyonlardan birini başlatmak için, 2 ay içerisinde 24 binden fazla işlemci kuruldu; bu sayede evreni temsil eden, bir milyar ışık yılı genişliğinde bir bölgede milyonlarca gökada oluştu. Volker Springel bu durum hakkında şunu söylüyor:
“German Gauss Centre for Supercomputing’den elde ettiğimiz fazladan hesaplama zamanı sayesinde bu alandaki teknoloji harikası ürün artık bizim eliimizde. Yaptığımız bu simülasyon sayesinde elimizde 500 terabitten fazla yeni veri var. Bu kadar fazla verinin hepsini incelememiz bizi uzun süre meşgul etmesiyle beraber, farklı astrofiziksel olaylara değişik bakış açılarıyla bakmamıza vesile olacak.”
Bu haber Science Daily adlı sitedeki haberden çevrilmiştir.
Birkaç ay içinde astronomlar yakın yörüngesindeki bir yıldızdan sinyal almak için teleskoplarını galaksimizin merkezindeki süper kütleli kara deliğe (Sagittarius A*) doğrultacaklar ve bu onlara Einstein’ın genel görelilik kuramını test etmek için başka bir içerik daha sağlayacak. S0-2 adı verilen bu yıldız, S yıldızları olarak bilinen yıldız sınıfındaki yıldızlardan (S tipi yıldızlarla karıştırılmasın) bir tanesi ve yaklaşık 4.3 milyon Güneş kütlesinde olan Sgr A*’nın (Sagittarius A*’nın kısaltması) yakın yörüngesinde bulunuyor.
S0-2’yi özel yapan şey ,eliptik yörüngesindeki kara deliğe en çok yaklaşan iki yıldızdan biri olmasıdır. Ve bu da yıldızın kara deliğin devasa çekim kuvvetinin etkilerini her 16 yılda bir göstermesi anlamına geliyor.
Genel göreliliğe göre ışık, güçlü bir yer çekimi alanı etkisinde ya gerilecek ya da kızıla kayacaktır. Küçük de olsa yıldızın yörüngesi de bundan etkilenecektir.
S0-2, galaksinin merkezine olan en yakın uzaklığı 17 ışık saatine (Güneş ile Neptün arasındaki mesafenin yaklaşık dört katı) ulaştığında ve ışık hızının yüzde 3’ü hızında giderken UCLA Galactic Center Group ile araştırmacılar bu değişikliklerin gerçekleşip gerçekleşmediğini dikkatli bir şekilde gözlemleyecek. Eğer bunu yaparlarsa genel göreliliği bir kez daha desteklemiş olacaklar.
Şimdi ise yeni bir çalışma sayesinde kırmızıya kayma ölçümünün yapılabileceğini biliyoruz. Fakat olası bir sorun vardı. Ya S0-2 bir ikili yıldızsa, tek bir yıldız değil de iki yıldızsa? Bu durum yapılacak ölçümleri zorlaştırır.
Araştırmaya göre, araştırmacılar olası bir ikili yıldız olarak görülen S0-2’ye yapılan ilk spektroskopik analiz sonucunda çıkarılan sonuca göre büyük ihtimalle S0-2 Güneş kütlesinin yaklaşık 15 katı olan tek bir yıldızdır. Eğer ona eşlik eden başka bir yıldız varsa, çok küçük olmalı ki planlanan bu gözlem üzerinde bir etkisi olmasın.
Galactic Center Group’un müdür yardımcısı Tuan Do, bu ölçümün o türde yapılacak ilk ölçüm olacağını söyledi.
“Yer çekimi, doğanın kuvvetlerinden detaylı bir şekilde en az ölçüm yapılmış olandır. Einstein’ın teorisi bugüne kadar bütün diğer ölçümlerden başarıyla çıktı. Bu yüzden eğer ölçülen sapmalar varsa bu kesinlikle yer çekiminin doğası hakkında birçok soruyu gündeme getirecektir! ”
Göreliliğin bir uygulaması olması nedeniyle S0-2 sadece büyüleyici değildir. Aynı zamanda o da diğer tüm S yıldızları kümesindeki yıldızlar gibi kendine özgüdür.
Yıldız süreçleri bakımından oldukça gençler ve bu da demek oluyor ki Sgr A*’ya yakın oldukları için kara deliğin gelgit kuvvetlerinin yıldız oluşum bölgelerini parçalayabileceği zorlu bir ortamda oluşmaları gerekiyor. O yüzden de tam olarak formlarını nasıl koruyabildikleri bir gizem olarak karşımıza çıkıyor ve bu, bizim bilmediğimiz başka bir yıldız oluşum mekanizması olabileceği anlamına geliyor.
Araştırmacılar S0-2’yi 1992 yılından beri gözlemliyorlar. Yani en yakın yörüngesini daha önce gözlemiş olmalılar. Aslında bunu Sgr A*’nın varlığını ispatlamak için kullandılar fakat aygıtlar yer çekiminden kaynaklanan yıldızın ışığındaki kızıla kaymayı gözlemlemek için yeterince hassas değildi. Ancak uzayı araştırmak için kullandığımız teknoloji 16 yıl boyunca bayağı gelişti.
“16 yıldır bunun için bekliyoruz. Kara deliğin şiddetli çekim etkisinde yıldızın nasıl davranacağını merak ediyoruz. S0-2 Einstein’ın teorisini mi takip edecek yoksa yıldız mevcut fizik yasalarına karşı mı gelecek? Yakında öğreneceğiz!” diyor başyazar Devin Chu.
S0-2’nin Sgr A*’nın yakınından 2018 ortalarında geçmesi bekleniyordu.
Bu arada ekibin yıldızın ayrıntılı analizini içeren makalesini The Astrophysical Journal’da bulabilirsiniz.
Astronomlar oldukça büyük, ölmekte olan bir yıldızın, kara deliğe dönüşümüne tanıklık etti. Hayata yenik düşen bu yıldızın kalıntılarını aramak için Büyük Çift Gözlü Teleskop ( Large Binocular Telescope/ LGT ) ve NASA’nın Hubble ve Spitzer uzay teleskopları güçlerini birleştirdiler fakat buldukları tek şey ölmekte olan koca bir yıldızın gözlerden kaybolduğuydu.
Dikkatleri üzerine çekecek büyük bir patlama yerine kaşla göz arasında yok oldu.
Güneş’imizden 25 kat daha büyük olan bu yıldız çok büyük bir süpernovaya sebep olmalıydı. Fakat onun yerine bir anda söndü ve arkasında bir kara delik bıraktı. Bu olay ” büyük başarısızlık ” olarak adlandırıldı.
Ohio State Üniversitesi’nden bir grup astronom bir yıldızın ortadan kaybolarak muhtemelen bir karadeliğe dönüştüğünü gözlemledi. Süpernova sonrasında bir kara deliğe dönüşmek gibi beklenilen bir süreç yerine, ” başarısız süpernova ” sonucunda kara deliğe dönüştü.
Telif Hakkı: NASA’s Goddard Space Flight Center/Katrina Jackson
“Yakınımızdaki galakside yaşanan bunun gibi ‘büyük başarısızlıklar’ , astronomların neden en büyük kütleli yıldızlarda nadiren süpernovalar gördüğünü açıklayabilir.” diye belirtiyor Ohio State Üniversitesi’nden astronomi profesörü Christopher Kochanek.
Bu tip yıldızların yaklaşık yüzde 30’u – görünen o ki- bir süpernovaya ihtiyaç duymadan sessizce kara deliklere dönüşüyorlar.
” Tipik görüşe göre bir yıldız ancak bir süpernovaya dönüştükten sonra kara delik oluşturabilir.” diye açıkladı Kochanek ve ekledi ” Eğer bir yıldız çok kısa süreliğine süpernovaya dönüşüp yine de bir kara delik oluşturuyorsa, bu niye en büyük kütleli yıldızlarda süpernova göremediğimizi açıklamaya yardımcı olacaktır.”
Hubble Uzay Teleskobu’ndan alınan görünebilir ışık ve kızılötesine yakın bu fotoğraf çifti, dev yıldız N6946-BH1 ‘ in gözlerden kaybolmadan önceki ve bir kara delik oluşturmak için içeriye doğru çökmesinden sonraki hallerini gösteriyor. Soldaki görsel, Güneş’in 25 katı kütleli yıldızın 2007’deki halini göstermektedir. 2009’da, yıldız, parlaklığı birkaç ayda Güneşin 1 milyon katından fazla olacak şekilde aniden gelişti. Ama daha sonra, 2015’teki sağ panelden de görebileceğiniz gibi yok oldu. Yıldızın önceden olduğu yerden çok küçük miktarda kızılötesi ışık algılandı. Bu radyasyon muhtemelen kara deliğe dönüşen enkazdan geliyordu. Kara delik 22 milyon ışık yılı uzaklıkta sarmal galaksi NGC 6946’da bulunmaktadır.
Telif Hakkı: NASA, ESA, and C. Kochanek (OSU)
Kochanek, en son sonuçlarını Royal Astronomi Topluluğu’nun Aylık Duyuru’larında yayınlamış olan bir grup astronoma liderlik etmektedir. Galaksiler arasından, onlar 22 milyon ışık yılı uzaklıkta bulunan, lakabı ” Havai Fişek Galaksisi” olan NGC6946’yı izlemeyi seçtiler; çünkü orada süpernovalara sık sık rastlanılmaktadır. Bu galaksideki NGC6946-BH1 adlı belirli bir yıldız 2009’da zayıf bir şekilde parlamaya başladı ve 2015’te ise sanki varoluştan yok oldu.
LBT başarısız süpernova araştırmaları için gözünü bu yıldıza diktiken sonra, astronomlar Hubble ve Spitzer uzay teleskoplarını, yalnızca daha sönük haliyle hala orada olup olmadığını görmek için bu yıldıza doğru çevirdiler. Spitzer’ı aynı zamanda o noktadan herhangi bir kızılötesi radyasyonunun yayılıp yayılmadığına bakmak için kullandılar. Bu, yıldızın belki hala orada, toz bulutlarının arkasına saklanmış olabileceğine bir işaret olabilirdi.
NGC6946-BH1 adlı ölüme mahkum bu yıldız Güneş’in 25 katı büyüklüğünde. 2009’da zayıfça parlamaya başladı. Ama 2015’te sanki varoluştan yok oldu. Dikkatli bir eleme sürecinden geçerek, araştırmacılar yaptıkları gözlemlere dayanarak yıldızın bir kara deliğe dönüşmüş olması gerektiğinin kanısına vardılar. Bu belki de evrendeki son derece büyük kütleli yıldızların kaderidir.
Telif Hakkı: NASA, ESA, and P. Jeffries (STScI)
Bütün testler negatif çıktı. Yıldız artık orada değildi. Dikkatli bir eleme sürecinden geçerek, araştırmacılar yaptıkları gözlemelere dayanarak yıldızın bir kara deliğe dönüşmüş olması gerektiğinin kanısına vardılar.
Bu proje, ne sıklıkla yıldızların bu büyük başarısızlığı tecrübe ettiklerini tam anlamıyla bilebilmek için henüz çok genç; ama Ohio State’in eski öğrencilerinden olan ve geçtiğimiz günlerde doktorasını bu çalışmasıyla kazanan Scott Adams başlangıç niteliğinde bir tahmin öne sürdü.
“NGC6946-BH1 araştırmamızın ilk yedi yılında karşılaştığımız ilk başarısız süpernova örneğiydi. Bu süreç içerisinde, izlediğimiz galaksiler içinde altı süpernova meydana geldi, buradan varsayıyoruz ki büyük kütleli yıldızların yüzde 10 ila 30’u başarısız süpernovalarla ölüyorlar.” dedi Scott Adams.
“Bizi en başında bu araştırmaya iten aynı problemi açıklayabilecek küçük bir parça sadece bu, ki problem de evrende olması gerekenden çok daha az süpernova gözlemliyor olmamızdı; eğer bütün büyük kütleli yıldızların bu şekilde öldüğünü varsayarsak.”
Çalışmanın yardımcı yazarı Krzysztof Stanek’e göre, keşfin en ilginç tarafı yüksek kütleli kara deliklerin kökenlerine dair, LIGO deneyinin gravitasyonel dalgalar aracılığıyla saptadığı tarzdaki çıkarımlardı. (LIGO açılım: Laser Interferometer Gravitational-Wave Observatory)
Mantıklı olması şart değil, diyor Ohio State’den astronomi profesörü Stanek, büyük kütleli bir yıldız süpernova geçirebilir ki bu onun dış katmanlarının çoğunun uzaya dağılmasına sebep olan bir süreçtir fakat yine de LIGO’nun saptadıklarının skalasında geride büyük kütleli bir kara delik oluşturacak kadar kütle kalır.
“Zannediyorum ki, ortada bir süpernova yokken çok büyük kütleli bir kara delik oluşturmak daha kolay.” diye de ekledi.
Bu yıldız şu ana kadar gördüğümüz yıldızlardan kara deliğe en yakın olanı. Astronomların keşfettiği bu yeni yıldız devasa bir kara deliğin etrafında, Dünya’nın Ay’a olan uzaklığının 2.5 katı uzaklıkta dönüyor. Kara deliğin etrafında bir turunu tamamlaması sadece yarım saat sürüyor. Ay’ın görece küçük Dünya’mız etrafındaki bir turunu 3,683 km/saat hızda 28 günde tamamladığını göz önüne aldığımız zaman yıldızın akıl almaz bir hızda hareket ettiği ortaya çıkıyor.
Bir astronom takımı, teleskoplarla yapılan derin uzay gözlemlerinden elde edilen verileri kullanarak 47 Tuc X9 adı verilen ve bizden 14,800 ışık yılı uzaklıkta bulunan bir yıldız kümesinin içinde olan ikili yıldız sisteminden yayılan X ışınlarını ölçtüler. Yıldız çifti astronomlar için yeni değildi; bu yıldız çifti 1989 yılından beri biliniyordu fakat orada tam olarak neler olduğu daha yeni açıklık kazanmak üzereydi. Araştırmacı Arash Bahramian bu konu hakkında şunu belirtiyor: “ Çok uzun bir süredir X9’un düşük kütleli, Güneş’e benzeyen bir yıldızdan madde çeken bir beyaz cüce olduğu düşünülmüştü.” Bir beyaz cüce başka bir yıldızdan madde çektiği zaman bu sistem “kataklizmik değişen yıldızlar” olarak adlandırılır ama 2015 yılında bunlardan birinin kara delik olduğunun bulunması bu sistemin kataklizmik değişen yıldızlar sistemi olma hipotezine ciddi bir kuşku düşürdü. NASA’nın Chandra Teleskobu’ndan gelen veriler ikili sistemin arasında büyük miktarda oksijenin bulunduğunu açıkça gösterdi ve bu durum genellikle beyaz cücelerle ilişkilendiriliyordu ama beyaz cücenin başka bir yıldızdan madde çekmesi yerine, görülen o ki kara delik bir beyaz cüceden madde çekiyordu.
Beyaz cüceler genellikle bir yıldızın kalıntısı olan, yoğunluğu çok yüksek -Güneş’in kütlesinde ve sadece Dünya’mızın boyutunda olan bir cisim gibi- gök cisimleridir, yani beyaz cücelerin yüzeyinden madde çekmek güçlü bir kütle çekim kuvveti gerektirir. Curtin Üniversitesi’nde ve Uluslararası Radyo Astronomi Araştırma Merkezi’nde çalışan araştırmacı James Miller-Jones, yıldızın on milyonlarca yıldır kütlesinin büyük bir kısmını kara deliğe kaptırdığını ve şimdi geriye kütlesinden çok bir şey kalmadığını düşündüklerini belirtti. Gerçekten heyecan verici olan bu haberin, X ışını yoğunluğundaki değişimlerin beyaz cücenin yörüngesini 28 dakikada tamamlaması gerektiğini göstermesiyle bu beyaz cüceyi şimdiye kadar bilinen en hızlı kataklizmik yıldız yaptı. Miller-Jones aynı zamanda bu keşiften önce buna benzer herhangi bir kara deliğin ve bu kara deliğe en yakın yıldızın MAXI J1659-152 olarak bilinen bir sistem olduğunu ve yıldızın yörüngesini 2-4 saatte tamamladığını bildiklerini belirtti. Eğer benzer kara deliklerin her iki sistemde de benzer kütleleri varsa bu X9’da bulunandan fiziksel olarak 3 kat büyük bir yörüngeyi gösterir. Sonuç olarak X9’daki iki cisim arasındaki uzaklık yaklaşık 1 milyon kilometre ve Dünya’yla Ay arasındaki uzaklığın yaklaşık 2.5 katı. Sayıları kullanırsak yıldızın bu 6.3 milyon kilometrelik yörüngeyi yarım saatte dolaşması bize 12,600,000 km/saat’lik bir hız veriyor ki bu da ışık hızının yüzde biri kadar.
Sydney Üniversitesi’nden Geraint Lewis, The Sydney Morning Herald’dan Marcus Strom’a şöyle bir açıklamada bulundu: “Bu ender kara delikleri keşfetmek çok önemli çünkü onlar sadece devasa yıldızların süpernova patlamaları sonucunda oluştukları sonları değil, aynı zamanda başka yıldızların ölümünden sonra onların tekrardan evrilmesinde rol oynuyor. Bu iki gökcismi yakın zamanda birbirine kavuşamayacakmış gibi görünüyor, en azından beyaz cücenin kara deliğe düşecekmiş gibi görünen bu güzel dansı çok uzun bir süre devam edecek. Aslında bu iki gökcisminin geçmişte birbirine daha da yakın olduğu ortaya çıktı. Kara deliğin, beyaz cücenin yoğun ve güçlü kütle çekiminin üstesinden gelebilmesi için cisimlerin birbirlerine oldukça yakın olması gerekiyor. Zaman içerisinde beyaz cücenin maddesi kara delik tarafından süpürüldükçe, şimdi daha parlak olan beyaz cücemiz birazcık daha geriye gitti.” Araştırmacı Craig Heinke ise bu konu hakkında şunu belirtiyor: “Zamanla o kadar çok madde çekildi ki sonunda beyaz cücenin kütlesi sadece bir gezegenin kütlesi kadar kaldı. Eğer kütlesini kaybetmeye devam ederse beyaz cüce tamamen yok olup gidebilir.” Bu gelecekteki kütle çekim dalgaları araştırmalarında çalışacak bilim insanları için çok güzel bir haber çünkü şu an Lazer İnterferometre Kütle Çekim Dalga Gözlemevi tarafından kullanılan teknoloji X9’dan yayılan zayıf atımları fark edebilmek için yeterli değil, ama bu hala üzerinde çalışılmakta olan bir konu ve belki bir gün bilim bize zayıf kütle çekim atımlarını gözlemleme şansını verecek. Tabii ki o zamana kadar kataklizmik değişen yıldızların çok daha hızlı hareket eden yeni bir kral ve kraliçesi çıkabilir. Bu araştırma “Montly Notices of the Royal Astronomy Society” tarafından yayımlandı ve araştırmanın tamamı arXiv.org’da bulunabilir.
Gökyüzüne baktığımız zaman birçok gökcismi görürüz. Bu gökcisimlerinden ilk akla gelen yıldızlardır. Yıldızlar, en temel tanımıyla kendi kütleçekim kuvvetleriyle bir arada duran parlak plazma küreleridir ve karbon, azot, oksijen gibi görece ağır elementlerin üretiminden ve dağıtımından sorumludurlar.
Yıldızlar tarih boyunca uygarlıklar için önem taşımışlardır; uygarlıklar gerek dinlerinin bir parçası, gerek bilimsel nedenlerle, gerek yönlerini bulmak için yıldızları incelemişlerdir. Eskiden yıldızların gökyüzüne asılmış ışık noktaları oldukları düşünülürdü ve bu yüzden insanlar bu noktaları birleştirerek takımyıldızları hayal etmişlerdir, ancak gerçekte uzay 3 boyutlu olduğundan yakın olduğu düşünülen yıldızlar arasında binlerce ışık yılı olabilmektedir.
Ayrıca insanlar uzun yıllardan beri bu yıldızları kataloglamaktadırlar. Bilinen en eski yıldız haritası MÖ 1534 yılında Antik Mısır’da görülmüştür.
Figür 1: Aslan Takımyıldızı (Johannes Hevelius-1690)
Yıldızlarda enerji üretimi:
Gelişen teknoloji ve bilim sayesinde artık yıldızlar hakkında çok daha fazla bilgi sahibiyiz. Eskiden yıldızlar, sadece gökyüzüne asılı noktalar olarak düşünülürken artık yapılarını oluşturan elementlerden yaşlarına kadar birçok bilgiye ulaşabiliyoruz.
Bu gelişmeler, yıldızların evrendeki yaşamın yapıtaşlarını oluşturduğunu öğrenmemizi sağlamıştır; çünkü gelişmiş yaşam için vazgeçilmez olan karbon ve oksijen dahil birçok ağır element yıldızların çekirdeğindeki nükleer füzyon reaksiyonları sayesinde oluşur. Bu işlemin adı nükleosentezdir. Büyük Patlama nükleosentezi, yıldız nükleosentezi, süpernova nükleosentezi gibi farklı türleri vardır. Temel olarak önceden var olan nükleonlardan yeni atom çekirdeği yaratma işlemine verilen isimdir.
Yıldızlarda gerçekleşen yıldız nükleosentezinin birçok türü vardır. Bunların en temel olan ikisi hidrojenin yanmasıyla gerçekleşen proton-proton zincirleme reaksiyonu ve CNO (karbon, azot, oksijen) döngüsüdür.
Çekirdek sıcaklığı 15 milyon kelvin civarında olan yıldızlarda gerçekleşen reaksiyon türü proton-proton zincirleme reaksiyonudur. Bu reaksiyonun gerçekleşmesi için protonların kinetik enerjilerinin elektrostatik itki kuvvetini yenmesi gerekir (Coulomb bariyeri).
Bu reaksiyonun ilk aşaması, yeterli enerjisi olan iki protonun çarpışmasıyla başlar. Bu aşamadan sonra iki protondan biri nötrona dönüşür. Bu işlem zayıf etkileşimle açıklanır ve işleme Beta bozunumu (β+) adı verilir. Bu değişim sırasında alttaki Feynman diyagramında da görülebildiği gibi, proton oluşturan iki yukarı kuarktan biri aşağı kuarka dönüşür ve böylece proton nötrona dönüşmüş olur.
Zayıf etkileşim ise bu değişim sırasında yukarı kuark aşağı kuarka dönüşürken devreye girer. Bu dönüşüm sonucunda bir W+ bozonu açığa çıkar, bu bozon ise daha sonra bozunarak bir pozitron ve bir elektron nötrinosu açığa çıkarır. Bu aşamanın sonunda bir adet döteryum atomu oluşmuş olur ve bu atom daha sonra bir protonla birleşerek bir helyum-3 atomu oluşturur.
Bu oluşan helyum-3 atomu, ortamdaki başka bir helyum-3 atomu ile birleşerek bir tane helyum-4 atomu oluşturur ve ortama 2 tane proton bırakılır.
Proton-proton reaksiyonu Güneş gibi fazla büyük olmayan yıldızlarda gerçekleşir. Yıldız boyutu büyüdükçe üçlü alfa süreci gibi farklı tür reaksiyonlar gerçekleşir. Bu reaksiyonlara giren ve çıkan elementler hidrojen ile helyumdan daha ağır elementlerdir, fakat sonuçta yine hidrojen helyuma dönüştürülür.
Figür 3: Güneş’teki nükleosentez reaksiyonu
Yıldız evrimi:
Tıpkı doğadaki her şey gibi yıldızlar da doğar, büyür ve ölürler. Yıldızların yaşamı yıldızlararası uzaydaki gaz ve toz bulutlarında başlar. Bu bulutlarda gaz basıncından kaynaklanan kinetik enerji, gazların kütleçekim kuvvetinden kaynaklanan potansiyel enerjiyle dengede olduğu sürece bulut hidrostatik dengededir. Virial teoremine (eşbölüşüm) göre dengenin korunabilmesi için kütleçekim potansiyel enerjisi, termal kinetik enerjinin iki katı olmalıdır. Bu denge, bulutun kütlesinin Jeans kütlesi adı verilen sınırı geçmesi veya bulutların çarpışması ve süpernova gibi olayların tetiklemesi sonucunda bozulabilir. Denge bozulduğu zaman bulut kendi içine doğru çökmeye, bu durumdan dolayı da gittikçe ısınmaya başlar.
Bu gittikçe küçük bir hacme sıkışan gaz kütlesi ilkyıldızları oluşturur. Bu, yıldız oluşumunun erken evresidir ve kütlesi Güneş’in kütlesine yakın olan bir yıldız için bu evre yaklaşık 10 milyon yıl sürer. İlkyıldız evresinden sonra bir yıldızın yetişkinlik evresi yani ömrünün çoğunu geçirdiği evre olan ana kol evresi gelir. Kütlesi Güneş’in kütlesine yakın olan bir yıldızın ana kol evresinde geçirdiği süre yaklaşık 10 milyar yılken kütlesi Güneş’in kütlesinden çok daha büyük olan yıldızlar bu evrede sadece 10 milyon yıl kadar geçirir: Bu farkın sebebi büyük yıldızların yakıtlarını çok daha hızlı tüketmesidir. Bu evreye ana kol ismi verilmesinin sebebi ise yıldızların ömürlerinin en büyük kısmını burada geçirmesi, ve bu dönemdeki yıldızların Hertzsprung-Russell adlı bir diyagramın (H-R diyagramı) ana kolunu oluşturmasıdır. Bu diyagram Ejnar Hertzsprung ve Henry Norris Russell tarafından geliştirilmiştir ve yıldızların renk-parlaklık grafiğidir. Yıldızların bu grafik üzerindeki yerleri parlaklık ve sıcaklıkları (veya renkleri) tarafından belirlenir. Yıldızların yaş, kütle, sıcaklık ve parlaklıkları birbirleriyle çok bağlantılı olduğu için sadece H-R diyagramındaki yerine bakarak bile bir yıldız hakkında birçok çıkarımda bulunmak mümkündür.
Figür 4: Hertzsprung-Russell diyagramı
Ana kol evresindeki tüm yıldızlar hidrostatik dengededir, yani yıldızdaki kütleçekim kuvveti çekirdekteki yüksek sıcaklık ve ışımadan kaynaklanan dış yönlü basınç ile dengededir. Çekirdekte üretilen enerji, ışıma ve/veya konveksiyon yolu ile yıldızın dış katmanlarından olan fotosfere kadar çıkar ve ışıma yoluyla yıldızdan atılır.
Ana kol yıldızları üst ve alt olarak ikiye ayrılabilir, bu ayrım enerji üretmekte kullanılan döngüye göre belirlenir. Güneş kütlesinin 1,5 katının altında olan yıldızlar genellikle proton-proton zincirleme reaksiyonu ile enerji üretir: Bu yıldızlar alt ana kol yıldızlarıdır. Üst ana kol yıldızları ise Güneş’in kütlesinin 1,5 katından daha büyük kütleye sahip olan yıldızlardır: Bu yıldızlar ise genellikle CNO döngüsü ile enerji üretir. Bir yıldızın çekirdeğindeki hidrojen yakıtı tükendiğinde nükleer reaksiyonlar aynı şekilde devam edemeyeceği için yıldız H-R diyagramındaki ana koldan uzaklaşmaya başlar. Bunun sebebi yıldızın ışıma basıncının kütleçekimini dengeleyememesi ve çekirdekteki sıcaklığın zamanla artıp farklı reaksiyonları tetiklemesindendir. Bu durumdan sonra yıldızın yine kütlesine bağlı olarak geçirebileceği birden fazla evre vardır. Bu evreleri Güneş’in kütlesine yakın ve Güneş’in kütlesinden 10 kat daha fazla kütleye sahip olan yıldızlar olarak ikiye ayırabiliriz.
Figür 5: Kütlelerine göre yıldızların yaşam süreleri
1)Kütlesi Güneş’in kütlesine yakın olan yıldızlar:
a) Yaklaşık 0.3 Güneş Kütlesi ile 8 Güneş Kütlesi arasında bulunan yıldızlar:
Hidrostatik dengesini koruyamayan yıldızlar kendi içine çökmeye başlar ve çekirdekteki madde sıkıştıkça tekrar ısınmaya başlar. Bu sıcaklık öyle bir noktaya gelir ki yıldız çekirdeğindeki füzyon tekrar başlar ve yıldız genişlemeye başlar. Yıldızın bu seferki boyutu ana kol evresindeki boyutundan çok daha büyük olur ve parlaklığı 1000 ile 10000 kat arasında artar ancak yıldızın yüzey alanı çok büyüdüğü için çekirdekte üretilen enerji daha fazla alana yayılır ve bu durumdan dolayı yüzey sıcaklığı daha düşük olur. Yüzey sıcaklığı düşük olan yıldızlar kırmızı görünürler; bu yüzden de bu evreye kırmızı dev ismi verilir. Bu evrenin sonunda da yakıtı tükenen yıldız tekrar içine çöker ancak bu sefer dış katmanlarını uzaya püskürterek gezegenimsi bulutsuları oluştururlar. Çekirdeği açıkta kalan yıldız beyaz cüceye dönüşür. Beyaz cüceler elektron-dejenere maddeden (fermiyon) oluşan sıkışık yıldızlardır (sıkışık yıldız beyaz cüce, kara delik ve nötron yıldızlarına verilen genel bir isimdir.). Yoğunlukları çok yüksektir, hacmi Dünya kadar olan bir beyaz cücenin kütlesi Güneş’in kütlesine yakındır.
Güneş, bir ana kol yıldızı
b) Kütlesi 0.3 Güneş Kütlesi’nden küçük olan yıldızlar:
Bu yıldızlar yakıtları tükenince kendi içlerine çökmeye başlarlar ancak kendi içine çöken gazın oluşturduğu basınç yeniden bir füzyon reaksiyonu başlatmaya yetmez bu yüzden direkt olarak beyaz cüceye dönüşürler.
Beyaz cüceler sürekli soğumaya devam eder. Soğumuş, daha fazla ısı ve ışık yaymayan beyaz cücelere siyah cüce denir. Ancak beyaz cücelerin soğuması için gereken süre evrenin şu an bilinen yaşından daha uzun olduğu için evrende bulunmaları beklenmemektedir. Bulunsalardı bile gözlemleri, yaydıkları ışık miktarının azlığından dolayı aşırı derecede zor olurdu ve kütleçekimsel etkileşimleri aracılığıyla bulunmayı beklemek zorunda kalacaklardı.
2) Güneş’in kütlesinden 10 kat ve daha fazla kütleye sahip olan yıldızlar:
Bu yıldızların ana kol evresinden sonraki evreleri kırmızı süperdevdir. Kırmızı süperdevler yapı olarak kırmızı devler ile benzerdir ancak çok daha büyüklerdir. Ancak böyle bir kütleye sahip olan yıldız kırmızı süperdev evresini geçtikten sonra daha az kütleli yıldızlar gibi beyaz cüceye dönüşmez; bu noktadan sonra bu dev yıldızlar için çok daha etkileyici bir dizi olay başlar.
Tıpkı bir ana kol yıldızı gibi ölüm evresi başlayan kırmızı süperdev içine çökerek gittikçe sıkışır ve ısınır. İçine çöken kırmızı süperdev, Güneş gibi bir yıldızın hayatı boyunca ürettiği enerji kadar bir enerjiyi yayacak patlamaya sebep olur; bu patlamalara süpernova ismi verilir. Süpernovalar en fazla bir kaç ay kadar neredeyse bir gökadayı sönük gösterecek şekilde parlar, daha sonra ise sönerler. Bu esnada yıldızdan kalan materyalleri saniyede 30.000 kilometre (ışık hızının %10’u) hızla uzaya püskürtürler. Süpernovalar yeni yıldızların oluşumunda, demirden ağır elementlerin sentezinde rol oynarlar.
NGC 4526 Gökadası’nda SN 1994D (tip Ia) süpernovası
Süpernova patlamalarından geriye büzülen bir çekirdek kalır. Geriye kalan bu çekirdek sıkışık yıldızları oluşturur ancak böyle bir durumda geriye kalan çekirdeğin kütlesi küçük bir yıldızın geriye bıraktığı çekirdeğin kütlesinden fazla olacağı için beyaz cüce olmaz. Ancak kütlesi Chandrasekhar limitinden az olan sıkışık yıldızlar (1.44 Güneş kütlesi) beyaz cüce olabilir.
Eğer sıkışık yıldızın kütlesi Chandrasekhar limitiyle Tolman-Oppenheimer-Volkoff limitinin (3 güneş kütlesi) arasında ise bu sıkışık yıldız bir nötron yıldızıdır. Nötron yıldızları aşırı yoğun ve sıcaktırlar, yüzey sıcaklıkları yaklaşık 6×105 Kelvin’dir ve yoğunlukları ise 3.7×1017 ile 5.9×1017 arasındadır (Güneş’in yoğunluğunun yaklaşık 3×1014 katı). Bu demek oluyor ki bir kibrit kutusu kadar nötron yıldızı materyali yaklaşık 5 milyar ton ağırlığındadır.
Figür 6: Bir nötron yıldızının Vancouver şehrine oranla boyutu
Eğer sıkışık yıldızın kütlesi Tolman-Oppenheimer-Volkoff limitinden fazlaysa kendi içine çökmeye devam eder. Kendi içine çöken kütle Schwarzschild yarıçapı ismi verilen sınırı geçerse uzay-zamanı deforme ederek bir kara deliğe dönüşür.
Figür 7: Yoğunluk-kütle grafiği
Schwarschild yarıçapı bir kütlenin kaçış hızının ışık hızına eşit olduğu yarıçapa verilen isimdir, kaçış hızının ışık hızına eşit olması ışığın dahi bu cismin kütleçekiminden kurtulamayacağı anlamına gelir. Ancak sanıldığı gibi kara delikler evrendeki her şeyi içine çeken cisimler değildir yani kara deliğin çevresinde bir yörüngede bulunabiliriz ancak olay ufku ismi verilen sınır geçildiğinde kaçış hızı ışık hızından büyük olacağı için ve özel görelilik teorisine göre hiç bir kütle ışık hızından yüksek bir hızla hareket edemeyeceği için olay ufkunu geçen bir şeyin geri dönmesi imkansızdır.
Kwok, Sun (2006). Physics and chemistry of the interstellar medium.
“How the Sun Came to Be : Stellar Evolution” (PDF)
en.wikipedia.org/wiki/Protostar
The End of the Main Sequence, Gregory Laughlin, Peter Bodenheimer Fred C. Adams, The Astrophysical Journal, 482 (10 Haziran, 1997), sf 420-432
Zeilik, Michael A.; Gregory, Stephan A. (1998). Introductory Astronomy & Astrophysics (4th ed.). Saunders College Publishing. sf. 321-322. ISBN 0-03-006228-4.
Heger, A.; Fryer, C. L.; Woosley, S. E.; Langer, N.; Hartmann, D. H. (2003). “How Massive Single Stars End Their Life”. The Astrophysical Journal 591: 288.
Schawinski, K. et al. (2008). “Supernova Shock Breakout from a Red Supergiant”.
Whittet, D. C. B. (2003). Dust in the Galactic Environment. CRC Press. sf. 45–46. ISBN 0-7503-0624-6.
Krebs, J.; Hillebrandt, W. (1983). “The interaction of supernova shockfronts and nearby interstellar clouds”. Astronomy and Astrophysics