gokyuzu.org

Ay’ın Bir Zamanlar Atmosferi Vardı

Elde edilen yeni bilgiler, 3 veya 4 milyar yıl önce büyük yanardağ patlamalarından çıkan gazlarla; ve bu gazların Ay’ın yüzeyine çıkışı, uzaya sızmasından çok daha hızlı olmasıyla; Ay’ın atmosferinin oluştuğunu ortaya koydu. Bu çalışma Dünya ve Gezegen Bilim Dergisi’nde (Earth and Planetary Science Letters) yayımlandı.

Ay’a baktığımızda onun yüzeyinde; yüzeyini karartan volkanik karataşların – göktaşlarının çarpmasıyla oluşan – yüzeyindeki büyük havzaları kapladığını görürüz. Bu engin volkanik karataş denizi (Maria), Ay’ın hala sıcak olduğu zamanlarda yüzlerce kilometreyi bulan magma patlamalarıyla oluştu. Apollo’dan gelen örneklerin incelenmesiyle Ay’dan çıkan magmaların içinde karbon monoksit, su bileşenler, kükürt ve başka uçucu maddeler gibi pek çok gaz halinde bileşenler olduğu keşfedildi.

Bu yeni araştırmada, NASA’nın Marshall Uzay ve Havacılık Merkezi’nin Araştırma Görevlisi Dr. Debra H. Needham ve Ay ve Gezegenler Enstitüsü’nde Üst Düzey Personel Dr. David A. Kring, yanardağlardan çıkan gazların miktarını ölçtü ve bu gazların Ay’ın etrafında birikerek geçici bir atmosfer oluşturduğunu ortaya koydu. 3.5 milyar yıl önce, yanardağların en aktif olduğu zamanda, atmosferin en kalın halinde olduğu tahmin ediliyor, bununla birlikte uzaya saçılmadan önce atmosferin neredeyse 70 milyon yıl boyunca durduğu sanılıyor.

Fotoğrafta, Ay’ın Imbrium Havzası’nda bulunan yanardağların patlamasıyla çıkan gazların atmosferi oluşturması tasvir edilmiştir. Telif Hakkı: NASA MSFC

3.5 ve 3.8 milyar yıl önce; en büyük iki gaz atımı, lav denizinin Serenitatis ve Ibrium havzalarını doldurdu. Bu lav kıyılarını keşfedenler de Apollo 15 ve 17 görevlerinin astronotları oldu. Astronotların kıyılardan topladığı örnekler patlamaların olduğu zamanı belirlemede yardımcı olmakta kalmadı, yaşanan patlamalardan dolayı gaz çıkışlarının olduğunu da kanıtladı.

Ay hakkında edindiğimiz bu yeni bilgiler gelecekte yapılacak keşifler için aynı zamanda bir anahtar. Needham ve Kring’in araştırması, uçucu maddelerin Ay’ın kutuplarına yakın soğuk ve kalıcı karanlık bölgelerinde bulunan buz kaynaklarının içinde olduğuna işaret ediyor, bu da uzun süreli bir keşif için olan ihtiyaçları karşılayabilir. Buzlu kaynaklarda saklanan uçucular Ay’da (ve belki başka uzay keşifleri için) görev alacak astronotlar için yakıt ve hava kaynağı olabilir.

Yeni araştırma, Kring tarafından yönetilen ve NASA’nın Güneş Sistemi Keşif ve Araştırma Sanal Enstitüsü (Solar System Exploration Research Virtual Institute) tarafından desteklenen LPI-Johnson Uzay Merkezi Ay Bilimi ve Araştırmaları Merkezi’nden (Center for Lunar Science and Exploration) başlatıldı. Needham, Linux Uzmanlık Enstitüsü’nde (LPI) eski bir doktora sonrası araştırmacıdır.

Kaynak:

NASA Marshall Uzay ve Havacılık Merkezi , Ay ve Gezegenler Enstitüsü 

Referans:

Debra H. Needham, David A. Kring. Lunar volcanism produced a transient atmosphere around the ancient Moon. (Ay’daki yanardağ patlamaları Ay’da geçici atmosfer oluşturdu) Earth and Planetary Science Letters, 2017; 478: 175 DOI: 10.1016/j.epsl.2017.09.002

Ay ve Gezegenler Enstitüsü’nden alınmıştır. İçerik yazının uzunluğu ve anlaşılır olması için değiştirilmiş olabilir.

Makale Science Daily Sitesi’nden çevrilmiştir.

Çeviri: Tolga Can Menekşe

Astroloji Neden Bilim Değildir?

Astroloji Neden Bilim Değildir?

Mağara çağlarından bu yana, insanların ilgisini çeken bir yer olmuştur gökyüzü. Gökyüzünü aydınlatan o hayat kaynağı sarı ışık huzmesi ve bu büyük ışık huzmesinin yokluğunda ortaya çıkan ufak ateş parçaları… İnsanların bu cisimlerin belirli bir kurallar dizisi dâhilinde hareket ettiğini fark etmeleri uzun sürmedi. Bundan dolayı da eski zamanlarda insanlar için gökyüzünü okumak, hayatta kalabilmeleri için oldukça gerekli bir hale geldi çünkü gökyüzündeki hareketlilik, atalarımız için bir nevi takvim niteliğindeydi. Tarımın icat edilmesinden sonra ekimin ve hasatın ne zaman yapılması gerektiğini bu gökyüzü haritası söylüyordu. Güneş ve yıldızlar mevsimleri belirliyor, Ay ise gel-gitleri, birçok hayvanın yaşam evrelerini belirliyordu. Güneş, yıldızlar ve Ay ‘ın insan yaşamı üzeri etkisi olduğuna göre atalarımızın aklına şu soru gelmiş olmalı: “Gökteki öteki cisimler insan yaşamını etkiliyorsa, gezegenlerin etkisi ne olabilir ?”

Astrolojiye girmeden önce takımyıldız kavramını anlatmamız gerekir. Takımyıldızlar, antik çağlarda tanrılar, savaşçılar gibi karakterlerin sahip olduğu mitolojik hikâyelerin adeta tuvalleri idi. İnanılmaz bir hayal günüce sahip bu insanlar, yarattıkları eşsiz mitolojik kültürlerini ve destanlarını gökyüzüne dökmüşlerdi. Öyle ki, bu hikâyelere göre avcı avını hedef alıyor, Pegasus, kanatlanıp gökyüzüne uçuyor ve prenses Andromeda ise hapis düştüğü zindandan kaçıyordu. O zamanlardaki insanlar için gökyüzündeki yıldızlar adeta “noktaları birleştir” oyunu gibiydi. Bu birleştirilmiş noktalar arasında önemli olan birkaç takımyıldız vardır. Bu takımyıldızların özelliği Güneş’in bulunduğu yörünge içinde olmuş olmalarıdır ve bu özellik, Güneş’in hangi mevsimde hangi takımyıldız üzerinde olduğunu belirtmeye olanak sağlar. Antik çağlarda bu yapının yardımı ile “Zodyak Çemberi” adı verilen takvim benzeri bir cetvel yapılmıştı. Bu cetvel, tutulmaları ve gündönümlerini(ekinoks) tahmin etmeye olanak vermekteydi. Astrolojinin ortaya çıkışı, bu takımyıldızların insan hayatını etkileyip etkilemediğini sorgulanması ile ortaya çıkmaya başladı.

Astrolojinin kökenleri Batlamyus adıyla bilinen Claudius Ptolemaus’a kadar iner. Babilliler gökyüzünü 12’ye ayırmış ve bugün aşina olduğumuz burçları ortaya çıkarmışlardır. Carl Sagan Cosmos adlı kitabında Batlamyus’un Tetrabiblos adlı astoloji kitabından bir kaydı aktarmış. Kitapta yazanlara göre Batlamyus gezegenlerin sadece insanların huylarını etkilediğine inanmakla kalmıyor aynı zamanda bedensel özelliklerini de etkilediğinden bahsediyor. Bir teoriye bilimsel diyebilmemiz için deneysel verilerle desteklenebilmesi gerekir. Ancak Astrolojinin ve yıldız fallarının birçok mantıksal soruya cevap veremediği ortada. Mesela,

  • İkizlerin yaşamı… İkizlerin doğumu aynı gezegenin belirli bir yerde oluşuna rastlar. Fakat yaşadıkları hayatlar birbirinden farklıdır.
  • Burçların belirlenmesinde ana rahmine düşme zamanı değil de doğum saati ve günü göz önüne alınır.
  • Çoğu Astrolojik terim, Dünyanın merkezde olduğuna inanıldığı zamandan kalmadır. Güneş Merkezli modellerde anlamlarını yitirirler.
  • Peki ya, Uranüs, Neptün ve Plüton… Antik çağda bu gezegenler gözlemlenemiyordu. Gezegenlerin konumunun, insan davranışı ve olaylar üzerine bir etkisi varsa, o zaman bu gök cisimleri olmadan kurulmuş olan astrolojik denklemler nasıl olur da doğru olabilir?
  • Bahsedilen Güneş yörüngesine Aralık-Ocak ayları içerisinde Yılancı adı verilen bir takımyıldız bulunmakta, bu takımyıldız astrologlar tarafından yok sayılmıştır.
  • Astrologlar tarafından bir burcun etki süresi, Güneş’in arkasında kaldığı süreye göre belirlenmekte, ancak tüm burç takımyıldızları aynı büyüklükte değil. Mesela Akrep Burcunun Güneş arkasında kalma süresi iki ay iken Terazinin yarım aydır. Dolayısıyla her burcun etki süresinin bir ay olması anlamsızdır.

Astrolojiye ve yıldız fallarına olan inancı tersine çevirmek için girişimde bulunan Bart Bok, Lawrence Jerome ve Paul Kurtz 1975 yılında 19‘u Nobel ödüllü alan 192 bilim insanı tarafından imzalanan bir bildiri yayınladılar. Bildiride verilen tepki, biraz da günümüz basın kuruşlarınadır zira günlük gazetelerde hep fallar ve burç yorumları görebilirken nadiren bilim haberleri görebilirsiniz. Tamamen antik çağlara ait uydurma fikirler üzerinden insanlar günümüzde para kazanmaktadır.

Astrolojiye olan inanışta  “Forer (Barnum) Etkisi” de oldukça etkilidir, çünkü genel topluma hitap eden şeyler kişisel de algılanabilmektedir. Aslında bu söylenenler tahmin değil öneri niteliğindedir. Dünyada terazi burcuna sahip milyonlarca insan var. Astrologlar genel yorumlar yapıyorlar ki birçok insana uysun. Bu belirsizlik bilimin çürütülebilirlik özelliğine de ortadan kaldırıp, sözde bilim olduğuna işaret eden bir diğer neden olarak gösterilebilir.

Yıldızlar ve gezgenler bizleri elbette etkilerler, ancak aramızdaki bağ astrologların önerdiğinden çok daha muhteşemdir. Bizler şu anda gökyüzünde gördüğünüz milyarlarca ve milyarlarca yıldıza, etrafımızı saran bir higgs alanıyla, kütleçekimi alanlarıyla bağlıyız ve yaptığımız her ufak hareket, bu cisimlere etki etmekte. Bu açıdan burcunuz size 3 vakte kadar ne olacağını söyleyemez ancak gezegenimizin sonraki zamanlardaki konumu hakkında fikir verebilir.

Kaynaklar:

Cosmos – Carl Sagan

https://www.academia.edu/2813746/Why_astrology_is_a_pseudoscience

Bu yazı, NBeyin Dergisi Şubat 2016 sayısında yayımlanmıştır

Yazarlar

Damla Şahinbaş, ODTÜ Fen Bilimleri Öğretmenliği Bölümü

Özgür Can Özüdoğru, ODTÜ Fizik Bölümü

Kütleçekimsel Dalgaların Bize Armağanı: Çarpışan Nötron Yıldızları

Dünya genelindeki bilim insanları ilk kez 130 milyon ışık yılı uzaklığındaki iki nötron yıldızının çarpışmasını fotoğraflamayı başardı. Bu olay “GW170817” olarak adlandırıldı.

Ve bunun tamamı, olayı saptayan ve gözlemevlerini nereyi incelemeleri gerektiği ile ilgili uyaran kütle çekimsel dalga astronomisi sayesinde oldu. Böylelikle bunu, ilk eş zamanlı optiksel ve kütleçekimsel dalga gözlemi olarak ilkler listesine ekleyebiliriz.

Parti verebilir miyiz? Hadi verelim!

Şakayı bir yana bırakırsak, bu gerçekten muhteşem bir şey. Daha önce hiçbir zaman kütleçekimsel dalgaların nereden geldiğini ya da bu dalgaların sebep olduğu olayları saptayamamıştık. Ve bu, tüm zamanların yalnızca beşinci kütleçekimsel buluşu.

Önceki dört buluş, bir büyük kara delik oluşturmak için bir araya gelen ikili kara delik sistemlerindeki çarpışmadan (ya da birleşmeden) elde edilmişti. Onları göremememizin iki ana sebebi vardı.

Bunlardan ilki, bu yılın başlarına kadar sadece iki saptayıcımızın olmasıydı –LIGO’nun (Lazer İnterferometre Kütle Çekim Dalga Gözlemevi) Louisiana, Livingston’daki ve Washington, Hanford’daki interferometreleri (çatışma ölçeği). Bu da ilk üç olayın gökyüzünün sadece çok geniş bir kısmında saptanabileceği anlamına geliyordu.

Üçüncü bir saptayıcının eklenmesi, ki bu da İtalya’daki Virgo’nun interferometresi, daha birkaç hafta önceki dördüncü kütleçekimsel dalga olayında lokasyon kesinliğini 10 civarında bir faktör olarak geliştirdi.

Diğer sebep ise kara deliklerin doğaları gereği görünmez olmalarıydı. Kara delikler bütün ışığı emdiklerinden onların varlığını yalnızca etraflarındaki uzaydaki değişimlere bakarak anlayabiliriz. Öte yandan, nötron yıldızları oldukça görülebilirdir haliyle aralarındaki çarpışma heyecanla beklenen bir şeydi.

Bu bir dizi yeni gözlemi yapmak için 70 civarında yeryüzü ve uzaya bağlı gözlemevi, merceksel galaksi NGC 4993’ün hemen bitişiğindeki Su yılanı takımyıldızını araştıran Virgo ve LIGO’ya katıldı.

İlk saptayıcı 17 Ağustos’ta EDT saat dilimine göre 08.41’de ötmeye başladı.

Sonrasında, yaklaşık 1.7 saniye sonra  iki uzaya dayalı gözlemevi, NASA’nın Fermi Gama Işını Uzay Teleskobu ve ESA’nın Uluslararası Gama Işını Astrofizik Laboratuvarı, gökyüzünün aynı alanından yoğun bir gama ışını patlaması –evrendeki en parlak ve en enerjik olayları- algıladı.

“Cırıltı” da farklıydı tabi. Bunlar ses verisine dönüştürülen şeylerdir ve kara delik çarpışmaları için sadece saniyenin kesirleri kadar sürerler. GW170817’de cırıltı 100 saniye civarında sürdü.

Bu bir tesadüf değildi ve dünya genelindeki astronomlar teleskoplarını Suyılanı’ya yöneltmek için çılgınca atıldılar.

LIGO’nun sözcüsü David Shoemaker ,“Bize hemen öyle göründü ki, kaynağın görmeyi umduğumuz bir diğer kaynak olan nötron yıldızları olması olasıydı ve Dünya’ya göreceğimizin sinyallerini veriyordu.” dedi.

Nötron yıldızları, bir süper kütleli yıldızın yaşam döngüsünün sonunda meydana gelebilecek şeylerden biridir.

Çekirdek, protonları ve elektronları nötron ve nötrinolara sıkıştırarak çöker. Nötrinolar kaçar fakat nötronlar sadece 10-20 kilometre arasında (6-12 mil) bir çapta çekirdeğin içine inanılmaz derecede yoğun olarak doluşurlar.

Eğer çekirdeğin ağırlığı üç yıldız kütlesinden daha azsa, bu yoğunluğun baskısı nötron yıldızını destekler. Eğer çekirdek daha büyükse, çekirdek bir karadeliğin içine çöker.

GW170817’deki iki nötron yıldızı yaklaşık 1.1 ve 1.6 yıldız kütlesi arasındaydı ve hızlandıkça etraflarındaki uzay zamanını çarpıtarak ve evrene dalgacıklar göndererek yaklaşık 300 kilometrelik mesafeden daralan sarmal bir şekilde birbirlerini yörüngelerine alıyorlardı.

Onları gözlemlediğimiz uzaklıktan bakıldığında son çarpışma aşırı derecede parlaktı, gama ışınlarından yoğun bir “ateş topu” yayıyordu. Bunu aşağıdaki videoda görebilirsiniz. Büyük parlak nokta, NGC 4993 galaksisinin merkezinde. Hemen yukarısına ve soluna bakın, GW170817’yi görebilirsiniz.

Kesinlikle inanılmaz değil mi? Bu iki nötron yıldızının arasındaki çarpışma Güneş’ten çok da büyük değil ve 130 milyon ışık yılı uzaklıktaki bu olayı bizzat kendi gözlerinizle görüyorsunuz.

Fakat durum gittikçe iyi bir hal alıyor. Gama ışını patlamasından bahsettiğimizi hatırlıyor musunuz?

NASA’nın Goddard Uzay Uçuş Merkezi’nin Fermi Projesi’nin bilim kadını Julie McEnery, “On yıllardır kısa gama ışını patlamalarının gücünü nötron yıldızı birleşmelerinden aldığından şüpheleniyorduk.” dedi.

“Şimdi bu olay için LIGO ve Virgo’dan gelen inanılmaz veri ile cevaba sahibiz. Kütleçekimsel dalgalar bize birleşen objelerin nötron yıldızlarıyla tutarlı kütleleri olduğunu ve gama ışınlarının ışıltısı da bize objelerin büyük olasılıkla karadelikler olmadığını çünkü bir karadelik çarpışmasının ışık yaymasının beklenmediğini söylüyor.”

Ve bütün bunlar bir kez daha Einstein’ın haklı olduğunu kanıtlıyor.

”Bu… kütleçekimsel dalgaların ışık hızıyla neredeyse aynı hızda -10.000 trilyonda birlik bir farklılıkta- olduğunu gösterip,  Einstein’ın 1915’teki öngörüsünü destekliyor.” diyor Melbourne Üniversitesi’nden Andrew Melatos.

Önümüzdeki haftalar ve aylarda da gözlemevleri kilonova hakkında daha fazla şey keşfetmek için çarpışmanın gözlemlerini yapmaya devam edecek. Ki bu da çarpışmadan geriye kalan maddeler hala parlıyorken ve uzaya püskürmeye devam ediyorken gerçekleşecek.

Dünya genelindeki gözlemevleri ve enstitüler aynı zamanda bu olay hakkında raporlar yayınlıyor olacaklar. Bu olayın daha keşfedilmeyi bekleyen birçok yönü var.

Shoemaker, “Nötron yıldızları ve ürettikleri salınımlar hakkındaki derin çalışmaların detaylandırılmış modellerinden alınan bilgiye göre, genel izafiyet gibi daha temel fizik konuları için bu olay son derece zengin bir kaynak.” dedi.

“Bu bizlere bir şeyler bahşetmeye devam edecek olan bir hediye.”

Daha fazlasını aşağıdaki Veritasium videosunda bulabilirsiniz:

LIGO-Virgo sonuçları “Physical Review Letters” gazetesinde yayınlandı.

Kaynak: Science Alert 

Çeviri: Elif Hazal Bilmiş

Uzayda Ateş Nasıl Yanar?

Uzayda Ateş Nasıl Yanar?

Ateş insanlık tarihindeki ilk ve en önemli bilimsel buluşlardan biridir. Binlerce yıl boyunca insanlık tarihinde belirli bir çağı kapatıp diğerini açmıştır. Kimi insanlar onu tanrı ilan etmiş, kimisi de karşı aşiretin yemeklerini çalmak için kullanmıştır. Bu gizemli tepkimenin tam anlamıyla ne olduğunu anlamamız ise, onu kullanmaya başlamamızdan binlerce yıl sonrasına dayanır.

 Ateş, anlaşılması kolay bir şey değildir, çünkü içindeki tepkimeler oldukça karmaşıktır. Ateşin gizemini anlayabilmek için ise maddenin gizemli bir hali olan plazmayı anlamak gerekir. Ancak bu konuda pek şanslı değiliz çünkü bu hala Dünya’da çoğunlukla ateşte rastlamaktayız.. Ayrıca yalnızca sıradan bir mum alevinde bile binlerce farklı kimyasal tepkime meydana gelmekte. Durumu biraz basitleştirirsek aslında gördüğümüz ve bize ısı ile ışık veren tepkime havadaki Hidrokarbonların, belirli bir sürtünme ya da kıvılcım yardımıyla Oksijen ile tepkimeye girerek  ‘i ve suyu açığa çıkartmasıdır. Buna yanma denir. Kozmosun tamamında yanma eyleminin temel gereksinimi Oksijen molekülleridir.

Peki, oksijenin etrafta bulunmadığı ama bizim laboratuarımızda ekleyebileceğimiz suni bir ortamda ateş nasıl olur? Bunun yanıtını Uzay kimyacıları Uluslararası Uzay İstasyonu ISS’de arıyorlar. Yakın zamanda da elde ettikleri sonuçları gösteren bir açıklamada bulundular.

ISS gibi düşük yerçekimli ortamlarda ateşin hareketini araştırmak üzerine FLEX adında bir proje oluşturuldu. Projede yer alan Dr. Forman A. Williams “Elementler alev almadan yanıyorlar, bu cümleyi ilk kurduğumda ben de dediğime inanmamıştım.” diye araştırma sonucunu açıkladı. Normal koşullarda yanan bir alev belirli bir miktar  ve Su oluşturur, bununla birlikte ortaya 1500 ile 2000 K ( yaklaşık 1227 ve 1727 C̊) arasında sıcaklık açığa çıkar. Dolayısıyla bu yanma tepkimesi; birçoğu gibi dışarıya ısıveren, yani ekzotermik, bir tepkimedir.

Uzayda oluşturduğumuz ateşlerde ise kimyasal açıdan Dünya’dakinden bambaşka bir durum gözlemlendi. Uzayda yanan bir ateşte  ve Su açığa çıkmıyor. Yerine CO(Karbon Monoksit) ve Formaldehit( ) adında zehirli bir gaz açığa çıkarıyor. Dünya’da da uzay ortamı gibi izole ortamlarda bu tip alevler üretilmiş, ancak hemen yok olmuşlardı.

Henüz böyle bir sonuçla karşılaşmamızın tam sebebi araştırılırken farkına varıldı ki bu yanma eylemi 500 K (yaklaşık 227 C̊) kadar bir sıcaklık açığa çıkmakta. Elbette bizim günlük hayatımız için bu bile yüksek bir miktar, fakat tepkimenin gerçekleşmsi için gereken ısının yarısı bile değil. Enerjinin ısı yoluyla değil de başka bir yolla dönüştürülüyor olması şu an ISS’deki kimyacıların araştırma konusu.

Araştırma görevlilerinden Dr. Williams ekliyor “Uzaydaki yanma tepkimeleri hakkında daha fazla fikir sahibi olmamız, uzayda yanma tepkimeleri ile oluşturulacak farklı motorlar için bize daha fazla bilgi sağlayacak. Bundan dolayı bu deneylerin ve pratikteki tüm sonuçların yeni bir teoriye filiz vermesi beklenmekte. Bu tür bir deneyi yapmak için ise Uzaydaki en büyük tesis olan ISS mükemmel bir yer.”

Yaşam hakkında elde ettiğimiz bilgiler arttıkça cevaplamak istediğimiz sorular da aynı oranda artıyor. Ancak Richard Feynman’ın dediği gibi “Bilimde henüz açıklayamadığımız soruların olması beni korkuya sürüklemiyor, aksine çocuksu merakımı yeniden tetikleyip daha büyük bir zevk ile araştırmalarıma devam etmemi sağlıyor.”

Şubat 2013, Bilim ve Gelecek Dergisi

Dr. Tony Philips’in “Strange Flames On The ISS” Makalesinden yararlanılmıştır.

Yazan: Özgür Can Özüdoğru

Ötegezegenler Tutulma Yöntemi ile Nasıl Gözlemlenir?

Güneş Sistemi Dışındaki Gezegenler Nasıl Gözlemleniyor?

Bundan 30 yıl öncesine kadar, keşfettiğimiz gezegenlerin hepsi yalnızca kendi güneşimiz çevresinde dolanıyorlardı. Ancak gezegen yalnızca Güneş’e ait bir cisim olamazdı. Samanyolu Gök adasında mutlaka bir yerlerde başka gezegenler, hatta o gezegenlerin bazılarında yaşam bile olmalıydı diye düşünmüştü bilim insanları. Henüz Dünya dışı bir yaşam bulamasak da evrenin başka gezegenler ile dolu olduğunu keşfettik yıllar içerisinde. Peki bunu nasıl başardık?

Güneş Sistemi Dışı Yıldız Avcılığı

Uzay teleskopları… Bu devrim yaratan cihazlar Dünya’nın atmosferinden kaynaklanan kirlilikten uzak olduğu için olağanüstü tutarlılıkta gözlemler yapabilmektedir. Bizlerin Güneş Sistemi’nin dışındaki diğer yıldızları tam tutarlılıkla içlerindeki materyale kadar görebilmemizi sağlayan yine bu robot dostlarımızdır. Yıldızın yansıttığı ışık tayfı sahip olduğu materyaller hakkında bizlere bilgi verir. (Kırmızı renk ışık tayfının demiri yansıtması gibi) Spektrometre adı verilen cihaz yardımıyla yıldızın gönderdiği ışığın renk oranınına bakılır ve buradan yola çıkarak yıldızın barındırdığı elementler ölçülür. Bu işlem Dünya’daki cisimlere Isaac Newton tarafından ilk defa ışığın bir prizma içinden geçirerek uygulanıyor. Ancak profesyonel anlamda spektroskopiyi astrofiziğe kazandıran kişi Dünya’daki ilk kadın astrofizikçilerden biri olan Cecilia Payne-Gaposckin’dir. Gaposckin, bu yöntem sayesinde yıldızların tamamının Helyum ve Hidrojen atomlarından oluştuğunu kanıtlamıştır.

Artık 21. Yüzyılda gökbilimcilerin kendi imkanlarıyla teleskop oluşturup kullandığı devirler sona erdi. Şu anda Dünya yüzeyinde de Dünya dışında devasa insansız teleskoplar var. Bu teleskoplar bir bakıma günümüzün kaşifleri ve bilim insanları bu kaşiflerin bizlere sunduğu verileri değerlendiren bir role büründüler. Bilim ve teknolojinin bu güzel ilişkisi de bizlere müthiş bir çocuk armağan etti: Güneş Sistemi dışındaki gezegenler, yani exoplanets….

Özellikle Kepler Uzay Gözlemevi’nin bizlere sunduğu gözlemler bizleri şok etti. Diğer yıldızların gezegenlerini görebiliyorduk ve onlardan gelen ışınları spektroskop ile ayırdığımızda içindeki elementleri de görebilmiştik. Birçoğundan mavi ve sarı ışınlar gelmişti. Sıvı halde su bulunduruyorlardı! Bu devrimin hemen ardından astrofizikçiler bu gezegenlerin boyutlarını ölçmeye koyuldular. Bunu yapmak için gezegenin, kendi Güneş’inin etrafında dolanmasını beklediler.

NASA’nın Carl Sagan Dünya Dışı Gezegen Araştırma Enstitüsü üyesi ve Washington Üniversitesi Öğretim Görevlisi Sarah Ballard yönetimindeki araştırma ekibi, tüm bu yöntemleri kullanarak Güneş Dışındaki gezegenlerin barındırdıkları elementleri ve boyutlarını araştırıp katalogluyor.

İnsanlık içinde bulunduğu yalnızlıktan kurtuluyor, yalnızca kendi galaksimizin kolundaki yıldızları bile araştırdığımızda yüzden fazla Dünya benzeri (Sıvı halde su barındıran, Oksijeni olan) gezegenler buluyoruz. Bu araştırmalarımız, o gezegenlere ulaşacak bir teknoloji keşfettiğimiz zaman tam anlamıyla sonuçlanacak. “Şimdi yalnızca kozmik okyanusta ayaklarımızı gezdiriyoruz.” demişti Carl Sagan. Yaşam, yaşamı aramaya devam edecek.

kaynak: http://science.nasa.gov/science-news/science-at-nasa/2014/18aug_sizeup/

Bu yazı, Uzay Çobanları Dergisi’nde Haziran-Temmuz-Ağustos 2014 sayısında yayımlanmıştır

Cassini’nin Ardından…

Yıllardan 2000 olmalı, eğer öyleyse 8 yaşındayım. Ankara’da teyzemlere gelmişiz, akşam sıkılmayayım diye elime eski Bilim ve Teknik dergileri tutuşturuluyor. Bir köşeye çöküp dergilerin resimlerine, yazıların ilgi çekici kısımlarına gömülüyorum. Cassini denen bir uzay aracının ta Satürn’e gönderildiğini işte o zaman öğreniyorum, 1997’de fırlatılışından 3 yıl sonra.

Yazının biri* ilgimi o kadar çekiyor ki yazıyı baştan sona okuyorum. “Büyük kaşiflerin sonuncusu” diyor yazı, ama nasıl şaşkın bir kaşifse Cassini Satürn’e değil Venüs’e doğru fırlatılmış! Çünkü sebebini tam anlayamadığım bir şekilde (“kütleçekim desteği” diye bir yöntem) Cassini önce Venüs’e, sonra uzayda dolanıp gene Venüs’e gidip, oradan Dünya’ya dönüp Satürn’e öyle varacakmış… “Öyle zaman kaybı değil mi, düz gitse daha kolay olmaz mı?” diyorum içimden, ama değilmiş işte! Satürn Güneş’e çok uzakta olduğu için (tam 1,4 milyar kilometre!) aygıtları plütonyum denen radyoaktif bir madde ile çalışacakmış, ama hem fırlatılırken hem de 1999’da Dünya’ya yeniden uğradığında bir aksilik çıkıp uzay aracı patlarsa atmosfere dağılacak o madde bizim için zararlı olabilirmiş. İnsanlar bir sürü eylem yapmışlar ama neyse ki roket fırlatılırken bir şey olmamış. Huygens denen küçük bir uzay aracı da Cassini ile birlikte gidiyormuş, Satürn’e vardıklarında Huygens Titan’a, şu atmosferi olan büyük uyduya inecekmiş. Ama yazıdaki tabloya bakınca bir “of” çekiyorum, çünkü tarihler çok uzak… Cassini daha Jüpiter’e bile varmamış, Satürn’e varmasına ise 4 koca yıl varmış. Görevinin tamamlanması için verdikleri yıl ise 2008. Yeni “milenyum”un heyecanını daha üzerinden atamamış benim için 2008 bana inanılmaz uzak bir tarih gibi geliyor. Evdekiler sesim çıkmıyor diye memnun, ben ise dergiler bitince heyecanlı bir şekilde kafa ütülemeye geri dönüyorum.

Cassini’nin kafamı karıştıran tuhaf rotası

Açıklı koyulu bölgeleriyle İapetus

Hakikaten de Cassini, 2004’te sağ salim Satürn’e varıyor, “Ben daha küçükken biliyordum Cassini’yi, ehe ehe” diyorum içimden. Yakın çekim fotoğraflar yavaştan Dünya’ya ulaşmaya başlıyor. Ertesi yıl, Huygens bir ilki gerçekleştirerek uzaklardaki soğuk ve yabancı bir dünyaya, Titan’a yumuşak iniş yapıyor. Hemen her ay, yeni birkaç fotoğrafla veya yeni bir keşifle kendinden bahsettiriyor Cassini. Henüz hızlı bir internetim veya düzgün bir İngilizcem yok ama haberleri o zamanlar yutarcasına okuduğum Bilim ve Teknik’ten takip ediyorum. Dünya’ya ulaşan fotoğraflardan açıkça görünüyor ki Satürn ihtişamlı halkalarıyla olduğu kadar birbirinden ilginç uydularıyla da eşsiz bir hedef: Kalın metan atmosferi ve metan gölleriyle Güneş Sistemi’ndeki hiçbir yere benzemeyen Titan, koca bir kraterle ısırılmış bir elmayı—ya da bilenler için Yıldız Savaşları’ndaki Ölüm Yıldızı’nı—andıran Mimas, yin-yang gibi bir yarısı kar gibi beyaz, öbür yarısı kömür gibi kara olan İapetus, uzaya su fışkırtan gayzerlere sahip süngerimsi bir buz topuna benzeyen Enceladus… Gerçi 1980 ve 1981’de Satürn’e uğrayıp yollarına devam eden Voyager 1 ve 2 uyduları sayesinde elimizde halihazırda birçok bilgi vardı ama 30 yıl ileri bir teknolojiyle Satürn’ü incelemek, ve bunu yıllarca Satürn’ü turlayan bir uzay aracıyla yapmak ufkumuzu misli misli genişletiyor…

Birçok uzay görevinde olduğu gibi, sorunsuz çalışmaya devam eden Cassini’nin görevi 4 yıldan 13 yıla kadar uzatılıyor, ilkokula başladığım yıl fırlatılan Cassini ise yüksek lisansa devam ederken bile hiç mızmızlanmadan Satürn’ün etrafında turlamaya, uyduların yanından geçip etrafın fotoğraflarını çekmeye devam ediyor, ta ki 2017’nin eylülüne kadar.

Cassini’nin çektiği son fotoğraflardan biri…

Cassini daha uzun süre çalışabilirdi kuşkusuz, fakat her ne kadar faydalı veriler gönderse de 90’ların teknolojisine sahip bir uzay aracını Dünya’dan kontrol etmek çok kolay değil. Cassini zaten ilk planlanan görev süresinin üç katı kadar çalıştı, kaldı ki Cassini’nin enerji kaynağı olan plütonyum bloklar, zaman geçtikçe daha az enerji ürettiği için eninde sonunda Cassini bir gün sessizliğe gömülecekti. Bu yüzden Cassini ekibi, son günlerinin daha da faydalı olması için Cassini’yi Satürn ile halkalarının arasındaki boşluğa akrobatik dalışlar yapan kozmik bir cambaza dönüştürdü. Cassini’nin bu son görevi tehlikeliydi kuşkusuz, ama son günlerini yaşayan bu kozmik cambaz daha fazla fedakarlığı alçakgönüllülükle kabul etti (Neyse ki Cassini, kendisine verilen görevlere burun kıvırabilecek şekilde programlanmamıştı!)… Böylece geçtiğimiz aralıktan beri Cassini, Satürn’e hiçbir uzay aracının olmadığı kadar yaklaşarak, kah Satürn’ün yüksek dozajlı radyasyonuna maruz kalarak, kah halkaların tozlu ve tehlikeli boşlukları arasından geçerek Satürn’ün atmosferi, yüksek bulutları ve halkaları hakkında eşsiz bilgiler topladı. Fırlatılışından 19 yıl, 335 gün sonra, 15 Eylül 2017’de ise Cassini, Satürn’ün eşsiz uydularını “kirletme” riskini ortadan kaldırmak adına Satürn’ün kucağına doğru son bir dalış yaptı. Satürn’ün gittikçe kalınlaşan atmosfer katmanlarına hızla girerken son sinyallerini gönderdi ve yıllardır incelediği gezegenle bütünleşerek sonsuza dek sessizliğe gömüldü…

Cassini, Satürn’ün etrafında dolandığı 13 yıl boyunca merak ettiğimiz birçok gizemi çözüp birçok yeni keşfin yapılmasını sağladı, bir o kadar da yeni sorunun tomurcuklanmasına önayak oldu. Planlanması, montajı, fırlatılması, uzayda turlamasıyla bu yazıyı okuyan birçok genç beyinden daha uzun bir geçmişe sahip Cassini’nin kaybı, uzay aracına yıllarını veren Cassini ekibi kadar dünyanın dört bir yanındaki gökbilim meraklılarını da buruk bir hüzne boğdu. Ne de olsa Cassini değerli bir uzay aracı olduğu kadar birçoğumuzun hayatının önemli bir kısmını dolduran bir simge, uzayda dolanan bir dosttu…

Not: NASA’nın Cassini için hazırladığı İngilizce e-kitaba buradan göz atabilirsiniz (PDF ve e-kitap formatları mevcut).

* Sunay, Çağlar. “Büyük Kaşiflerin Sonuncusu Cassini”. Bilim Teknik. Sayı 360 (Kasım 1997). Sayfa 32-39.

Yazan: Çağatay Kerem Dönmez

Türk Bilim İnsanları İlk Kez Bir Ötegezegen Keşfetti!

Ankara ve Ege Üniversitesi’nden dört bilim insanı Rus ve Japon bilim insanlarıyla ortak yürüttükleri 10 yıllık bir çalışmanın sonunda, 212 ışık yılı uzaklıkta Jüpiter’in 1.5 katı  çapa sahip olan bir ötegezegen keşfettiklerini duyurdular. Bu keşif, Türk bilim tarihinde  keşfedilen ilk ötegezegen oldu.  Ankara Üniversitesi’nden Mesut Yılmaz’ın baş yazar olduğu makalede, Ege Üniversitesi Uzay Bilimleri Bölümünden Varol Keskin, Ankara Üniversitesi Astronomi ve Uzay Bilimleri Bölümünden Selim Osman Selam ve doktora öğrencisi İbrahim Özavcı da bulunuyor.

TÜBİTAK Ulusal Gözlemevi’nde yer alan 1.5 metre çaplı Rus-Türk teleskobu ile Japonya Okayama Gözlemevi’nde bulunan bir teleskop kullanıldı. TÜBİTAK tarafından desteklenen bu çalışmada yapılan analizlerin sonucunda gözlenen bu yıldızın hareketindeki değişimi incelediklerinde, kaynağın Jüpiter’e çok benzeyen bir gezegen olduğu ortaya çıktı. Jüpiter’den 1.5 kat daha büyük boyutlara sahip olan bu gezegen, yıldızı etrafındaki turunu neredeyse 365 günlük bir sürede  tamamlıyor. Yıldızına olan uzaklığı ise 1 astronomik birim( Dünya ile Güneş arasındaki uzaklığa verilen isim, 149,5 milyon km).

Mesut Yılmaz, 212 ışık yılı uzaklıkta bulunan  bu gezegene “Türk” ismini koymak istediklerini, bununla ilgili bir oylama yapabileceklerini belirtti. “Bildiğim kadarıyla Japonya, ABD, Fransa ve Kanada, keşfettikleri ilk gezegene bir isim verdiler. Bizde de neden olmasın? “Benim “Türk”, “Türk1” ve “Atatürk” isimleri aklımda geçti.” ifadelerini kullandı.

Kaynak:

1- http://aa.com.tr/tr/vg/video-galeri/turk-bilim-insanlari-ilk-kez-bir-gezegen-kesfetti

2-  http://www.ntv.com.tr/teknoloji/turk-bilim-insanlari-ilk-kez-bir-gezegen-kesfetti,OESjCo-Jr0S8Cx2Epp0qEQ

Yazan: İlkcan Erdem

Astronomlar Bilinen En Küçük Yıldızı Keşfetti !

Cambridge Üniversitesi’nde görevli astronomlar tarafından ölçülen en küçük yıldız keşfedildi. Boyut olarak Satürn’den çok az bir farkı bulunsa da, kütleçekimsel kuvveti Dünya’daki bir insanın hissetiği kuvvetten 300 kat daha güçlüdür.

Bu yıldız muhtemelen yıldızların oluşabileceği bir büyüklükte çünkü Hidrojen’i Helyum’a dönüştürecek nükleer füzyon için yeterli kütleye sahip. Eğer birazcık daha küçük olsaydı yıldızın merkezindeki basınç bu süreci devam ettirmeye yeterli olmayacaktı. Hidrojen füzyonu aynı zamanda Güneş’in ışıma gücünü sağlayan bir olaydır ve biz bu mekanizmayı Dünya’da bir enerji kaynağı olarak da kullanmaktayız.

Bu küçük yıldızlar Trappist-1gibi Dünya benzeri gezegenlerin olduğu yıldız sistemlerinin tespiti için de en iyi adaylardan biri.

 EBLM J0555-57Abolarak adlandırılan bu yıldızın Dünya’dan 600 ışık yılı uzaklıkta yer aldığı  tespit edildi.  Çift yıldız sisteminin bir parçası olan yıldız kendisinden daha büyük olan ”arkadaşının” önünden geçerken tespit edildi, ki bu method normalde yıldızların değil gezegenlerin tespitinde kullanılmaktadır. (Bkz: Kütleçekimsel Mercekleme Yöntemi) Bu konunun detayları Astronomy&Astrophysics  isimli dergide yayınlanacak.

Cambridge Cavendish Laboratuvarı ve Astronomi Enstitüsü‘nde yüksek lisans yapan ve çalışmanın baş yazarı olan Alexander Boetticher ”Bu çalışma bize yıldızların ne kadar küçük olabileceğini gösterdi” dedi ve ekledi: Bu yıldızın kütlesi biraz daha düşük olsaydı, çekirdeğindeki hidrojen füzyon reaksiyonu gerçekleşemezdi ve yıldız bunun yerine kahverengi bir cüce haline dönüşürdü.

EBLM J0555-57Ab, gezegen bulma projesi olan ve  Keele, Warwick, Leicester and St Andrews Üniversiteleri‘nce yürütülen WASP isimli çalışma ile keşfedildi.  EBLM J0555-57Ab, arkadaşı olan yıldızın önünden geçerken (çift yıldız tutulması) tespit edildi. Ana yıldız bu geçişte periyodik olarak karardı, ki bu onun yörüngesinde olan bir yıldızın imzasıydı. Bu olay sayesinde astronomlar cisimlerin kütleleri ve boyutlarını ölçebilmektedir, bu olayda ölçtükleri cisim küçük bir yıldızdı. EBLM J0555-57Ab’in kütlesi , CORALIE spektrografisinin verilerini kullanarak, Doppler, wobble yöntemi ile ölçüldü.

Von Boetticher: ”Bu yıldız,  bilinen diğer birçok gaz devi olan ötegezegenden daha ufak ve daha soğuk. Yıldızlararası fiziğin en etkileyici yanlarından biri, bu tür küçük yıldızların kütlesini ölçmek diğer büyük gezegenlere göre daha zordur. Neyse ki ötegezegen araştırmalarımızda bu tars çift yıldız sitemlerinde böyle küçük yıldızları keşfedebiliyoruz. Şaşırtıcı gelebilir ama yıldız bulmak bizi gezegen bulmaktan daha çok zorluyor” dedi.

Bu yeni ölçülen yıldız, TRAPPIST-1 için mevcut tahminle karşılaştırılabilir bir kütleye sahiptir; ancak, yarıçapı yaklaşık% 30 daha küçüktür. Cambridge Astronomi Enstitüsü^nün kıdemli araştırmacısı olan yazar Amaury Triaud, ”En küçük yıldızlar, Dünya benzeri gezegenlerin keşfi için en uygun koşulları sağlıyor. Bir ötegezegeni anlamak için önce yıldızını anlamak gerek, bu en temel şeylerden biri “diyor.

Evrende  çok sayıda yıldız olmasına rağmen, Güneş’in % 20’sinden daha küçük boyutta ve kütlede olan yıldızlar, düşük boyutları ve parlaklıkları nedeniyle algılanmaları zor olduğundan çok net anlaşılamamıştır. Bu çalışmada yıldızların anlaşılmasında kullanılan EBLM projesi bu bilginin açığa çıkarılmasını hedefliyor. Cambridge’in Cavendish Laboratuvarı’nın ortak yazarı Prof. Didier Queloz, “EBLM projesi sayesinde var olan yaygın yıldızların çevresindeki gezegenlerin , TRAPPIST-1’in etrafında dönen gezegenleri anladığımız gibi  anlayacağız” dedi.

Kaynak: https://phys.org/news/2017-07-smallest-ever-star-astronomers.html

İleri Okuma:Alexander von Boetticher et al. ‘A Saturn-size low-mass star at the hydrogen-burning limit.’ Astronomy & Astrophysics (2017). arXiv:  arxiv.org/abs/1706.08781

Çeviri: İlkcan Erdem

Bilinen En Yüksek Kütleli Kahverengi Cüce Keşfedildi!

Uluslararası bir astronomi ekibi, bilinen en yüksek kütleli ve en saf bileşimli kahverengi cüceyi (nükleer füzyon için çok küçük kütleli bir yıldız) keşfettiklerini açıkladı. SDSS J0104+1535 adıyla bilinen bu gök cismi, galaksimizin en dış bölgesine uzanan halelerden birinin içinde yer almaktadır. Bilim insanları bu keşfi “Monthly Notices of the Royal Astronomical Society” isimli dergide yayımladı.

Kahverengi cüceler, yakıtını kullanan yıldızlar ile onların etrafında dönen gezegenlerin ortasında bir boyuttadır. Hidrojeni helyuma dönüştüren nükleer füzyon için çok küçük boyuttadırlar ancak gezegenlerin bir çoğundan da yüksek bir kütleye sahiptirler. Dünya gezegeninden 750 ışık yılı uzaklıkta, Balık Takımyıldızı’nda bulunan SDSS J0104+1535,  Güneş’ten 250 kat daha saf bir gaz yapısına sahiptir ve bünyesinde 99.99% hidrojen ve helyum gazı barındırır. Tahmini olarak 10 milyar yıl önce oluştuğu düşünülmektedir. Ayrıca ölçümler göstermektedir ki bu kahverengi cüce yaklaşık olarak Jüpiter’in 90 katı bir kütleye sahiptir. Bu da SDSS J0104+1535‘i bilinen en yüksek kütleli kahverengi cüce yapar. Daha önceden kahverengi cücelerin ilkel gazlardan oluştuğu bilinmiyordu ve bu keşif bize galaksimizin antik geçmişinden gelen bir sürü ”saf” kahverengi cüce olabileceğini gösterdi.

Bu ekibin başında olan, Kanarya Adaları’ndaki Institute of Astrophysics’den Dr.ZengHua Zhang:

”Bu kadar saf içeriğe sahip bir  kahverengi cüce görmeyi beklemiyorduk. Bu keşif bizlere daha keşfedilmemiş bir çok şeyin olabileceğini gösteriyor. Dışarıda buna benzer keşfedilmeyi bekleyen gök cisimleri yoksa, bu beni çok şaşırtacaktır.”

SDSS J0104+1535, optik ve yakın-kızılötesi spektrumu yardımıyla  L tipi bir ultra-kahverengi cüce olarak sınıflandırıldı. Bu ölçüm Avrupa Güney Gözlemevi’nin Çok Büyük Teleskop’u (European Southern Observatory’s Very Large Telescope) yardımıyla yapıldı. Bu sınıflandırma, yakın zamanda Dr. ZengHua Zhang’in yayımlanan şeması üzerine kuruludur.

Orjinal Makale Kaynağı: Z. H. Zhang et al. Primeval very low-mass stars and brown dwarfs – II. The most metal-poor substellar object, Monthly Notices of the Royal Astronomical Society (2017)DOI: 10.1093/mnras/stx350

Ayrıca Bakınız: https://phys.org/news/2016-04-brown-dwarfs.html

Çeviri: İlkcan Erdem

Kara Deliğin Etrafında Işık Hızının %1’i Hızda Dönen Bir Yıldız Keşfedildi

Bu yıldız şu ana kadar gördüğümüz yıldızlardan kara deliğe en yakın olanı. Astronomların keşfettiği bu yeni yıldız devasa bir kara deliğin etrafında, Dünya’nın Ay’a olan uzaklığının 2.5 katı uzaklıkta dönüyor. Kara deliğin etrafında bir turunu tamamlaması sadece yarım saat sürüyor. Ay’ın görece küçük Dünya’mız etrafındaki bir turunu 3,683 km/saat hızda 28 günde tamamladığını göz önüne aldığımız zaman yıldızın akıl almaz bir hızda hareket ettiği ortaya çıkıyor.

Bir astronom takımı, teleskoplarla yapılan derin uzay gözlemlerinden elde edilen verileri kullanarak 47 Tuc X9 adı verilen ve bizden 14,800 ışık yılı uzaklıkta bulunan bir yıldız kümesinin içinde olan ikili yıldız sisteminden yayılan X ışınlarını ölçtüler. Yıldız çifti astronomlar için yeni değildi; bu yıldız çifti 1989 yılından beri biliniyordu fakat orada tam olarak neler olduğu daha yeni açıklık kazanmak üzereydi. Araştırmacı Arash Bahramian bu konu hakkında şunu belirtiyor: “ Çok uzun bir süredir X9’un düşük kütleli, Güneş’e benzeyen bir yıldızdan madde çeken bir beyaz cüce olduğu düşünülmüştü.” Bir beyaz cüce başka bir yıldızdan madde çektiği zaman bu sistem “kataklizmik değişen yıldızlar” olarak adlandırılır ama 2015 yılında bunlardan birinin kara delik olduğunun bulunması bu sistemin kataklizmik değişen yıldızlar sistemi olma hipotezine ciddi bir kuşku düşürdü. NASA’nın Chandra Teleskobu’ndan gelen veriler ikili sistemin arasında büyük miktarda oksijenin bulunduğunu açıkça gösterdi ve bu durum genellikle beyaz cücelerle ilişkilendiriliyordu ama beyaz cücenin başka bir yıldızdan madde çekmesi yerine, görülen o ki kara delik bir beyaz cüceden madde çekiyordu.

Beyaz cüceler genellikle bir yıldızın kalıntısı olan, yoğunluğu çok yüksek -Güneş’in kütlesinde ve sadece Dünya’mızın boyutunda olan bir cisim gibi- gök cisimleridir, yani beyaz cücelerin yüzeyinden madde çekmek güçlü bir kütle çekim kuvveti gerektirir. Curtin Üniversitesi’nde ve Uluslararası Radyo Astronomi Araştırma Merkezi’nde çalışan araştırmacı James Miller-Jones, yıldızın on milyonlarca yıldır kütlesinin büyük bir kısmını kara deliğe kaptırdığını ve şimdi geriye kütlesinden çok bir şey kalmadığını düşündüklerini belirtti. Gerçekten heyecan verici olan bu haberin, X ışını yoğunluğundaki değişimlerin beyaz cücenin yörüngesini 28 dakikada tamamlaması gerektiğini göstermesiyle bu beyaz cüceyi şimdiye kadar bilinen en hızlı kataklizmik yıldız yaptı. Miller-Jones aynı zamanda bu keşiften önce buna benzer herhangi bir kara deliğin ve bu kara deliğe en yakın yıldızın MAXI J1659-152 olarak bilinen bir sistem olduğunu ve yıldızın yörüngesini 2-4 saatte tamamladığını bildiklerini belirtti. Eğer benzer kara deliklerin her iki sistemde de benzer kütleleri varsa bu X9’da bulunandan fiziksel olarak 3 kat büyük bir yörüngeyi gösterir. Sonuç olarak X9’daki iki cisim arasındaki uzaklık yaklaşık 1 milyon kilometre ve Dünya’yla Ay arasındaki uzaklığın yaklaşık 2.5 katı. Sayıları kullanırsak yıldızın bu 6.3 milyon kilometrelik yörüngeyi yarım saatte dolaşması bize 12,600,000 km/saat’lik bir hız veriyor ki bu da ışık hızının yüzde biri kadar.

Sydney Üniversitesi’nden Geraint Lewis, The Sydney Morning Herald’dan Marcus Strom’a şöyle bir açıklamada bulundu: “Bu ender kara delikleri keşfetmek çok önemli çünkü onlar sadece devasa yıldızların süpernova patlamaları sonucunda oluştukları sonları değil, aynı zamanda başka yıldızların ölümünden sonra onların tekrardan evrilmesinde rol oynuyor. Bu iki gökcismi yakın zamanda birbirine kavuşamayacakmış gibi görünüyor, en azından beyaz cücenin kara deliğe düşecekmiş gibi görünen bu güzel dansı çok uzun bir süre devam edecek. Aslında bu iki gökcisminin geçmişte birbirine daha da yakın olduğu ortaya çıktı. Kara deliğin, beyaz cücenin yoğun ve güçlü kütle çekiminin üstesinden gelebilmesi için cisimlerin birbirlerine oldukça yakın olması gerekiyor. Zaman içerisinde beyaz cücenin maddesi kara delik tarafından süpürüldükçe, şimdi daha parlak olan beyaz cücemiz birazcık daha geriye gitti.” Araştırmacı Craig Heinke ise bu konu hakkında şunu belirtiyor: “Zamanla o kadar çok madde çekildi ki sonunda beyaz cücenin kütlesi sadece bir gezegenin kütlesi kadar kaldı. Eğer kütlesini kaybetmeye devam ederse beyaz cüce tamamen yok olup gidebilir.” Bu gelecekteki kütle çekim dalgaları araştırmalarında çalışacak bilim insanları için çok güzel bir haber çünkü şu an Lazer İnterferometre Kütle Çekim Dalga Gözlemevi tarafından kullanılan teknoloji X9’dan yayılan zayıf atımları fark edebilmek için yeterli değil, ama bu hala üzerinde çalışılmakta olan bir konu ve belki bir gün bilim bize zayıf kütle çekim atımlarını gözlemleme şansını verecek. Tabii ki o zamana kadar kataklizmik değişen yıldızların çok daha hızlı hareket eden yeni bir kral ve kraliçesi çıkabilir. Bu araştırma “Montly Notices of the Royal Astronomy Society” tarafından yayımlandı ve araştırmanın tamamı arXiv.org’da bulunabilir.

Kaynak: http://www.sciencealert.com/astronomers-just-found-a-star-orbiting-a-black-hole-at-1-percent-the-speed-of-light

Çeviri: Ege Özkoç