gokyuzu.org

Galaksimizin Merkezindeki Kara Deliğin Yakınından Geçmek Üzere Olan Yıldız Einstein’ın Teorisini Test Edecek

Birkaç ay içinde astronomlar yakın yörüngesindeki bir yıldızdan sinyal almak için teleskoplarını galaksimizin merkezindeki süper kütleli kara deliğe (Sagittarius A*) doğrultacaklar ve bu onlara Einstein’ın genel görelilik kuramını test etmek için başka bir içerik daha sağlayacak. S0-2 adı verilen bu yıldız, S yıldızları olarak bilinen yıldız sınıfındaki yıldızlardan (S tipi yıldızlarla karıştırılmasın) bir tanesi ve yaklaşık 4.3 milyon Güneş kütlesinde olan Sgr A*’nın (Sagittarius A*’nın kısaltması) yakın yörüngesinde bulunuyor.

S0-2’yi özel yapan şey ,eliptik yörüngesindeki kara deliğe en çok yaklaşan iki yıldızdan biri olmasıdır. Ve bu da yıldızın kara deliğin devasa çekim kuvvetinin etkilerini her 16 yılda bir göstermesi anlamına geliyor.

Genel göreliliğe göre ışık, güçlü bir yer çekimi alanı etkisinde ya gerilecek ya da kızıla kayacaktır. Küçük de olsa yıldızın yörüngesi de bundan etkilenecektir.

S0-2, galaksinin merkezine olan en yakın uzaklığı 17 ışık saatine (Güneş ile Neptün arasındaki mesafenin yaklaşık dört katı) ulaştığında ve ışık hızının yüzde 3’ü hızında giderken UCLA Galactic Center Group ile araştırmacılar bu değişikliklerin gerçekleşip gerçekleşmediğini dikkatli bir şekilde gözlemleyecek. Eğer bunu yaparlarsa genel göreliliği bir kez daha desteklemiş olacaklar.

Şimdi ise yeni bir çalışma sayesinde kırmızıya kayma ölçümünün yapılabileceğini biliyoruz. Fakat olası bir sorun vardı. Ya S0-2 bir ikili yıldızsa, tek bir yıldız değil de iki yıldızsa? Bu durum yapılacak ölçümleri zorlaştırır.

Araştırmaya göre, araştırmacılar olası bir ikili yıldız olarak görülen S0-2’ye yapılan ilk spektroskopik analiz sonucunda çıkarılan sonuca göre büyük ihtimalle S0-2 Güneş kütlesinin yaklaşık 15 katı olan tek bir yıldızdır. Eğer ona eşlik eden başka bir yıldız varsa, çok küçük olmalı ki planlanan bu gözlem üzerinde bir etkisi olmasın.

Galactic Center Group’un müdür yardımcısı Tuan Do, bu ölçümün o türde yapılacak ilk ölçüm olacağını söyledi.

“Yer çekimi, doğanın kuvvetlerinden detaylı bir şekilde en az ölçüm yapılmış olandır. Einstein’ın teorisi bugüne kadar bütün diğer ölçümlerden başarıyla çıktı. Bu yüzden eğer ölçülen sapmalar varsa bu kesinlikle yer çekiminin doğası hakkında birçok soruyu gündeme getirecektir! ”

Göreliliğin bir uygulaması olması nedeniyle S0-2 sadece büyüleyici değildir. Aynı zamanda o da diğer tüm S yıldızları kümesindeki yıldızlar gibi kendine özgüdür.

Yıldız süreçleri bakımından oldukça gençler ve bu da demek oluyor ki Sgr A*’ya yakın oldukları için kara deliğin gelgit kuvvetlerinin yıldız oluşum bölgelerini parçalayabileceği zorlu bir ortamda oluşmaları gerekiyor. O yüzden  de tam olarak formlarını nasıl koruyabildikleri bir gizem olarak karşımıza çıkıyor ve bu, bizim bilmediğimiz başka bir yıldız oluşum mekanizması olabileceği anlamına geliyor.

Araştırmacılar S0-2’yi 1992 yılından beri gözlemliyorlar. Yani en yakın yörüngesini daha önce gözlemiş olmalılar. Aslında bunu Sgr A*’nın varlığını ispatlamak için kullandılar fakat aygıtlar yer çekiminden kaynaklanan yıldızın ışığındaki kızıla kaymayı gözlemlemek için yeterince hassas değildi. Ancak uzayı araştırmak için kullandığımız teknoloji 16 yıl boyunca bayağı gelişti.

“16 yıldır bunun için bekliyoruz. Kara deliğin şiddetli çekim etkisinde yıldızın nasıl davranacağını merak ediyoruz. S0-2 Einstein’ın teorisini mi takip edecek yoksa yıldız mevcut fizik yasalarına karşı mı gelecek? Yakında öğreneceğiz!” diyor başyazar Devin Chu.

S0-2’nin Sgr A*’nın yakınından 2018 ortalarında geçmesi bekleniyordu.

Bu arada ekibin yıldızın ayrıntılı analizini içeren makalesini The Astrophysical Journal’da bulabilirsiniz.

Kaynakça:

https://www.sciencealert.com/star-orbiting-milky-way-supermassive-black-hole-sagittarius-a-einstein-relativity

Çeviri: Ahmet Arda Pektaş

Eski Yıldızlar Karanlık Maddenin Sürati Hakkında Bize Bilgi Verebilir

Karanlık madde ile gökadanın en eski yıldızları arasındaki benzerlikler zannettiğimizden de fazla olabilir.

Amber Jorgenson tarafından 2 Şubat 2018 Cuma günü yayımlandı.

Kütle çekimsel kırılma ile, Hubble Uzay Teleskobu’nun elde ettiği bilgilerle hazırlanan bu resimde, devasa gökada kümesini saran karanlık maddenin dağılımı mavi renkte gösteriliyor. J.-P. Kneib/ESA/NASA

Evrenimizde dolaşan, karanlık maddeyi oluşturan parçacıkların hızları, gökbilim insanlarının bu gizemli maddeyi daha iyi anlamaları için çok önemli bir bilgi. Her ne kadar araştırmacılar senelerdir karanlık maddenin hızını ölçmeye çalıştılarsa da, şu ana kadar hiçbir girişim başarılı olmadı. Cevabı bulabilmek için bir araya gelen bir grup araştırmacı ise ortaya farklı bir bakış açısı koydu: karanlık maddenin hızını gözlem yöntemiyle bulmak yerine, bir bilgisayar simülasyonuyla bulmak.

24 Ocak’ta Physical Review Letters adlı dergide yayımlanan makalelerinde, uluslarası astrofizikçilerden oluşan bu grup, onların ürettiği bilgisayar simülasyonunun yanında, gökadanın en eski yıldızlarının ölçümü, karanlık maddenin hızıyla ilgili bilgilere ışık tutabilir.

Bir basın açıklamasında, Princeton Üniversitesi’nde fizik alanında asistan profesör olan Mariangela Lisanti bu araştırma için şunları söyledi:

‘’Bu eski yıldızlar, bizim göremediğimiz karanlık madde için bir nevi hız ölçeri, onların sayesinde Dünya yakınlarındaki hız dağılımını ölçebiliriz. Eski yıldızlar için karanlık maddenin ışıklı izleyicisi tabirini kulanmak yanlış olmaz. Karanlık maddeyi asla göremeyiz, çünkü gözlemlenebilecek ölçüde ışık yaymıyor. O bizim için görünmez, işte bu sebeple şu ana kadar onunla ilgili somut bir açıklama yapamadık.’’

Neden eski yıldızlar?

Her şey, gökadadaki birtakım yıldızların gökbilimcilere görünmez karanlık maddenin hareketlerini gözlemleyebilmesinde yardımcı olabileceği fikriyle başladı. Günümüzde geçerli olan kurama göre, Samanyolu’nun her tarafa yayılan karanlık madde halesi, aslında ‘althale’ adında, içinde hem karanlık madde hem de yıldızları kapsayan, küçük bileşenlerden oluşmuştur. Makalenin yazarlarından biri olan Jonah Herzog-Arbeitman ise şunu söylüyor: ‘’Varsayımımıza göre bazı altküme yıldızlar, bir nedenden ötürü karanlık maddenin hızıyla eşit hızda olmalıydı.’’

Yıldızları alternatif bir gözlem aracı olarak kullanmak için, öncelikle hangi yıldızların karanlık madde gibi davrandığını bulmaları gerekiyordu. Bunu yapmak için Eris adında, Samanyolu’nda yıldız ve karanlık madde gibi nesnelerin hareketlerini taklit eden bir bilgisayar simülasyonunu kullandılar.

Eris’ten gelen bilgileri inceleyen ekip, karanlık maddeyle pek çok çeşitte ve metalisitede yıldızın özelliklerini karşılaştırdılar. Metalisite, bir yıldızın içindeki ağır, demir gibi, ve hafif metallerin oranıdır. Metallerin süpernova patlamaları ya da nötron yıldızlarının çarpışması sonucu oluşmasından dolayı araştırmacılar, yıldızın oluşumu sırasında bulunan ağır elementlere dayanarak bir yıldızın yaşını onun metalisitesi ile bulabilir. Samanyolu’nun zamanında birleştiği, içlerinde pek çok yıldız ve karanlık madde bulunduran küçük gökadaların içinde de az miktarda ağır metal olduğu biliniyor.

Simülasyonun çıktısında karanlık maddenin hızını gösteren kıvrımlar, az sayıda ağır metali içinde barındıran eski yıldızların hızını gösterenlerle neredeyse birebir aynıydı. Aslında geriye baktığımızda araştırmacıların eski yıldızlarla karanlık madde arasında kurduğu bu bağ çok da şaşırtıcı değil. Bay Necib ise bu konuda şunları söyledi:

‘’Karanlık madde ve bu eski yıldızlar aynı yerden ortaya çıktılar, aynı özelliklere sahipler.’’

Karanlık maddeyi algılamak için değişik bir yöntem

Yapılan eski yöntemlere nazaran, karanlık maddenin hızını simülasyon yardımıyla hesaplamak çok değişik bir yöntem. Geçtiğimiz on yıl içinde araştırmacılar, karanlık maddenin hızını ölçmek için Dünya’nın altında derinlere yerleştirilen xenon gibi yoğun maddelerden üretilen algılayıcıları kullandı. Bu sayede karanlık maddeyi oluşturan parçacıkların sıkışmış halde olan atomlara çarptırarak görülebilir bir titreşim yakalamayı umuyorlardı. Ancak, karanlık maddenin hızıyla birlikte kütlesi de deneyin başarılı olma şansını etkiliyordu. İşte bu yüzden gökbilimciler, karanlık maddenin hızını bulmak için büyük bir istekle uğraştı.

Eğer karanlık madde yavaş ve hafif ise, yoğun bir maddeyle görülebilir bir etkileşime girmesi için gereken miktarda kinetik enerjiye sahip olamayacaktı, bu sebeple de herhangi bir çarpışma algılanamayacaktı. Şimdilik bu düşünce doğruymuş gibi duruyor, zira  henüz araştırmacılar karanlık maddenin bu algılayıcılarla etkileşimde bulunduğunu gözlemleyemediler. Bayan Lisanti’nin de söylediği gibi, ‘’Şu ana kadar hiçbir şey gözlemleyemememizin sebebi, karanlık maddenin hız dağılımının tahminlerimizden farklı olması olabilir mi?’’

Konumunun çok zor bulunduğu ve görülmesinin imkansız olduğu göz önüne alındığında, bilgisayar simülasyonu kullanarak karanlık maddenin hızını ölçmek bize süratini ve başka niteliklerini keşfedebilmemiz için yeni kapılar açabilir. Fakat şimdilik, simülasyon sonuçları sadece kuramsal ve herhangi bir bilimsel kanıt teşkil etmiyor. Gökadamızın karanlık maddesinin hızıyla olan bağlantısı kurulmadan önce, daha fazla çalışma ile eski yıldızların hızlarının kesin bir şekilde belirlenmesi gerekiyor.

Bu bilgilerin kanıtlarla desteklenmesi ise beklediğimizden daha kısa sürede bile gerçekleşebilir. Avrupa Uzay Ajansı’nın Gaia uydusu milyarlarca yıldızdan bilgi toplamaya devam ediyor. Bulgularını paylaştığında ise bu kuramsal keşifler somut birer bilimsel kanıtlara dönüşebilir.

Astronomy.com sitesindeki makaleden çevrilmiştir.

Kaynak: http://www.astronomy.com/news/2018/02/ancient-stars-could-help-determine-dark-matters-velocity

Çeviri: Tolga Can Menekşe

Görsel Şölene Hazırlanın, Geminid Meteor Yağmuru Geliyor!

‘Her yıl aralık ayında gözlemlenen ‘’Meteor Yağmurlarının Kralı” olarak bilinen Geminid, bu yıl da 13 Aralık’ı 14 Aralık’a bağlayan gece,en yoğun halde, gözlemlenebilecek.’

‘Peki, Geminid meteor yağmuru nedir, nereden geliyor?’

 Meteorların İkizler Takımyıldızı’ndan çıkıp geliyormuş gibi görünmesi sonucu Geminid (İkizler) olarak adlandırılan meteor yağmuru aslında 3200 Phaethon adlı asteroidin, yörüngesinde dolanırken, Güneşe yakınlaştığı kısımlarda bazı parçalarının kopması sonucu ardında bıraktığı izlerden oluşuyor.

‘Uygun koşullarda, saatte ortalama 120 meteorun atmosfere girmesi beklenen bu göktaşı yağmuru 17 Aralık’a kadar azalarak devam edecek.’

Şimdi ışık kirliliğinden uzak bir yerde,  bakışlarınızı göğe çevirin ve görsel şölenin tadını çıkarın!

Kaynaklar:

https://www.space.com/34921-geminid-meteor-shower-guide.html

http://www.wikizero.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvR2VtaW5pZHM

https://www.timeanddate.com/astronomy/meteor-shower/geminids.html

http://www.wikizero.org/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvRmlsZTozMjAwX1BoYWV0aG9uX29yYml0X2RlY18yMDE3LnBuZw

https://10tvprod.cdntdpc.com/sites/10tv.com/files/nasa-geminids.JPG

Yazan: İrem Karaçin

2018 Yılında Bizi Bekleyen En Etkileyici 7 Astronomik Gelişme

2017 yılında astronomi ve astrofizik alanında birbirinden etkileyici birçok gelişme meydana geldi. Tam Güneş tutulması, iki nötron yıldızının çarpışmasından kaynaklı kütleçekim dalgalarının gözlemlenmesi gibi olayların yanında, ülkemiz bilim insanlarının gerçekleştirdiği iki büyük keşif de  yer almaktadır; SXP 1062 isimli çift yıldız sistemindeki nöron yıldızının 18 dakikalık periyodundaki kaymanın varlığını keşfedilmesi ve  Türk bilim insanlarının ilk kez bir ötegezegen keşfetmesi.

Astronomi alanı için oldukça verimli geçmiş olan bu güzel seneyi geride bırakırken, yeniden gökyüzü ile dolu bir yıla girmenin heyecanıyla size bu sene  astronomi, astrofizik ve kozmoloji alanında gerçekleşecek olan bazı olaylardan bahsedeceğiz.

1) Tutulmalar:

Bu sene tam bir Güneş tutulması olmayacak; ancak 3 tane parçalı Güneş tutulması ve 2 tam Ay tutulmasını gözleme şansımız olacak.

  • 31 Ocak- Avustralya, Kuzey Amerika, Doğu Asya ve Pasifik Okyanusu’ndan izlenebilecek tam Ay tutulması.
  • 15 Şubat- Antarktika, Şili ve Arjantin’den izlenebilecek parçalı Güneş tutulması.
  • 13 Temmuz- Antarktika ve Avustralya’nın güney uç kısmından izlenebilecek parçalı Güneş tutulması.
  • 27 Temmuz- Avrupa’nın, Afrika’nın, batı ve orta Asya’nın çoğundan ve Batı Avustralya’dan izlenebilecek tam Ay tutulması.
  • 11 Ağustos – Kuzeydoğu Kanada, Grönland, Kuzey Avrupa ve Kuzeydoğu Asya’dan izlenebilecek olan parçalı Güneş tutulması.

2) Meteor Yağmurları:

Her sene insanları büyüleyen meteor yağmurları bu sene de aynı şekilde kendilerini göstermeye devam edecekler bize. Meteor yağmurları bu sene topluluğumuz için çok daha fazla anlam ifade etmektedir, ancak şimdilik sürpriz olsun diyelim ve yazımıza devam edelim 

12-13 Ağustos tarihinde pik yapacak olan Perseid meteor yağmurunda saatte yaklaşık 60 meteorun atmosfere girmesi beklenirken; 13-14 Aralık tarihinde pik yapması beklenen Geminid meteor yağmurunda bu sayının saatte 120 meteora ulaşacağı tahmin ediliyor.

3) Bir Karadeliğin Olay Ufkunu Gözlemleyebileceğiz (En sonunda!) :

Bu yılın Nisan ayında, Olay Ufku Teleskobu adı verilen çok teleskoplu bir proje ile, karadeliğin olay ufkunun -ışık dahil hiçbir şeyin kaçamayacağı kadar çok güçlü çekiminin olduğu bölgeye verilen isim- gözlemlenmesi planlanmaktadır.

Galaksimizin merkezinde yer alan Sagitarrius A isimli karadeliğin gözlemlendiği ve fotoğaflarının çekildiği 5 gecelik sürenin sonunda neler çıktığı 2018’in erken zamanlarında belli olacak ve bizler gerçekten de bu gelişmeyi büyük bir heyecanla beklemekteyiz.

4) Ay Keşfi Girişimleri:

Yıldız çocukları, artık resmileşti ki insanlık Ay’a yeniden gidiyor! Ay’a son adım atan kişi 1972’de NASA astronotu Eugene Cernan’dı; ancak gelecek sene direkt Ay’a adım atılamayabilir.

Başlangıç için, Hindistan ülke tarihinde ilk defa Ay’ın yüzeyine bir  rover yani ”gezgin”-gezegenlerin yüzeyine inerek orada araştırma yapan robotlar- göndermeyi planlamakta.

Uzun süredir bu konuda sessizliğini korusa da SpaceX, Ay’ın yörüngesine iki insan ile birlikte bir gezi planlıyor. Ayrıca Çin, Chang’e 4 ve Chang’e 5 isimli iki araç ile Ay’ın karanlık- Dünya’dan görünmeyen yüzü- yüzüne bir keşif gezisi yapacak.

Bunların yanı sıra, Amerika da  Ay  yüzüne insan göndermeyi planlıyor, ve unutmamalıyız ki Google bu konuyu destekleyen Lunar XPrize isimli bir yarışma da düzenlemektedir.

5) Asteroidler:

Rosetta ve Philae uzay araçlarının 67P / Churyumov-Gerasimenko’yla randevuları ve daha sonraki araştırmaları hakkında heyecanlıysanız 2018 yılını çok seveceksiniz! Bu yıl bir değil, iki ayrı hedef ile buluşacak olan asteroid avcılarımız var!

Haziran ayında, JAXA’nın 2014 yılında fırlatılan Hayabusa uzay aracı, Dünya’ya yakın bir yörüngede olan C ve G tipi Ryugu asteroidi ile buluşacak. Aynı zamanda NASA’nın OSIRIS-REx isimli uzay aracı da Bennu isimli bir asteroid ile randevusuna yaklaşmakta.

6) Pulsar Havai fişeği:

Galaksimizde bulunan en parlak yıldızlardan birinin yakınında bir pulsar gerçek anlamda patlayacak! Bu pulsar patladığında bir kozmik havai fişek gösterisi açığa çıkacak. Ancak bu olayın ne zaman olacağını tam olarak söylemek çok zor.

7) Merkür’ e Sonda Gönderiyoruz:

Bu sene Cassini’ni aramızdan ayrılışını gördük, Juno hala daha Jüpiter’de çalışmalarını sürdürmekte ancak daha fazla gezegen avcılarına ihtiyacımız var ve şanslıyız ki BepiColombo burada!

ESA ve JAXA, bu sene Merkür’e yola çıkmak üzere bir uzay aracı fırlatacak. Evet, belki BepiColombo 2025 yılına kadar Merkür’e ulaşamayacak; ama bize getireceği bilgiler bunu beklediğimize değecek.

Sevgili yıldız çocukları, astronomi ve gökyüzü dolu yepyeni bir seneye girmek üzereyiz. Bu sene bütün yıldız çocuklarının -yani bizlerin ve sizlerin- umutları, hayalleri ve hayatları Vega’nın ışıkları kadar güzellik dolu olsun. Hepinize mutlu seneler kozmik okyanusun gezginleri !

Kaynak: https://www.sciencealert.com/7-reasons-to-turn-your-eyes-to-the-sky-in-2018

Çeviri: İlkcan Erdem

Var Olmaması Gereken “Dev” Gezegen

‘Canavar’ Gezegenin Keşfi Oluşum Teorisini Zora Soktu

Uzak bir yıldızın etrafında, Gezegen Oluşum Teorisine göre var olması muhtemel olmayan dev bir gezegen keşfedildi. Sunulan yeni araştırma Kraliyet Astronomi Cemiyeti Dergisi’nde yayımlanmak için onay aldı.

‘Canavar’ gezegenin (NGTS-1b) varlığı, gezegen oluşum teorisine, bu boyuttaki bir gezegenin böylesine küçük bir yıldız etrafında dolanmasının mümkün olmadığını söyleyen teoriye, kafa tutuyor. Bu teoriye göre; bu denli küçük yıldızlar kolaylıkla taştan gezegenler şekillendirebilir ama Jüpiter boyutlarında bir tanesini asla.

NGTS-1b her halükârda bir gaz devi. Boyu ve sıcaklığından dolayı ‘sıcak Jupiter’ olarak da bilinir. Bu tip gezegenler -bizim Güneş Sistemi’mizin Jüpiter’ine, %20 daha az kütleye sahip olması dışında- çok benzer. Yine de Jüpiter’den farklı olarak NGTS-1b yıldızına çok yakın. Sadece Dünya ve Güneş arasındaki mesafenin %3’ü kadar ve yörüngesini 2.6 günde tamamlıyor. Yani NGTS-1b için bir yıl yaklaşık iki buçuk Dünya günü.

Buna karşın, ev sahibi yıldızı çap ve kütle olarak Güneş’imizin yarısı kadar küçük. Warwick Üniversitesi’nden Profesör Peter Wheatley, lanse edilen karışıklığı şöyle yorumladı: “Canavar bir gezegen olmasına rağmen NGTS-1b, bulmak için çok zordu. Çünkü yıldızı çok küçük ve sönük.” Zor şartlar dikkate alındığında, bu keşfin ne denli önemli olduğuyla devam etti. “Bu kırmızı cüce gibi küçük yıldızlar evrende en sık rastlananlardan, yani çok daha fazla dev gezegen bulunmayı bekliyor olabilir.”

NGTS-1b, 12 sıra teleskopuyla göğü didik didik arayan Yeni Nesil Transit Gözlem tarafından belirlenen ilk gezegen oldu. Araştırmacılar keşiflerini; karanlık göğün bölümlerini aylarca devamlı olarak görüntüleyerek ve yıldızdan gelen kırmızı ışığı yenilikçi kırmızıya karşı hassas kameralar ile tespit ederek gerçekleştirdi. Yıldızın ışığının, 2.6 günde bir periyodik olarak malum dev gezegenimiz tarafından bloke edilmesini dikkate aldılar.

Bu bilgileri kullanarak, gezegenin yörüngesini belirlediler ve dairesel hızını ölçerek boyutunu, kütlesini ve konumunu hesapladılar. Aslında bu yöntem; yıldızın, gezegenin kütle çekimselliğinden kaynaklanan yalpalanmasının ölçümüydü. Bu da NGTS-1b’nin boyutunu ölçmenin en iyi yoluydu.

Yine Warwick Üniversitesi’nden çalışmanın başyazarı Dr. Daniel Bayliss: “NGTS-1b’nin keşfi bize tam bir sürpriz oldu. Böylesine büyük gezegenlerin bu kadar küçük yıldızların etrafında var olmasını hiç beklememiştik. Sıradaki hedefimiz bu tip gezegenlerin galakside ne sıklıkla bulunduğunu, sadece bu iş için özenle yerleştirdiğimiz yeni Yeni Nesil Transit Gözlem’in yardımıyla bulmak.” diye açıklamada bulundu.

Yeni Nesil Transit Gözlem, Şile’deki Atacama Çölü’nün tam kalbinde Avrupa Güney Gözlemevi’nin Paranal Gözlemevi’nde bulunuyor ve bu yer Birleşik Krallık Üniversiteleri, Warwick, Leicester, Cambridge ve Queen Belfast Üniversitesi de dahil olmak üzere Cenevre Gözlemevi ve Almanya Gökyüzü Merkezi ve Şile Üniversitesi ile birlikte dışarıdan kişiler tarafından yürütülen ender yerlerden biri.

Yeni Nesil Transit Gözlem’i yöneten Profesör Peter Wheatley, şaşırtıcı sonuçlardan memnun olarak: “Yeni Nesil Transit Gözlem’in teleskop düzenini geliştirmek için neredeyse 10 yıl harcamış olmanın karşılığı olarak yeni ve tahmin edilmemiş gezegenler görmek nefes kesici. Daha ne kadar şaşırtıcı gezegenler keşfedebileceğimizi görmek için sabırsızlanıyorum.” dedi.

Kaynak:phys.org

Çeviri: Ertuğrul Ceylan

Zombi Yıldız; Patladı, Yılmadı, Bir Daha Patladı

Carnegie Mellon Üniversite’sinden Nick Konidaris ve Benjamin Shappee’nin de dahil olduğu uluslararası bir astronomi ekibi, 50 yıl içerisinde birden fazla patlama yaşanan bir yıldız keşfetti. Nature dergisinde yayımlanan bu keşif, yıldızların ölümü hakkındaki mevcut bilgilerimizle tamamen çelişmekte. Konidaris’in yaptığı cihaz da, bu olgunun incelenmesiyle ilgili tam burada hayati bir rol oynamıştır.

2014 Eylül’ünde Caltech ‘’Palomar Transient Factory’’ den bir grup astronom, gökyüzünde yeni bir patlama tespit etti: iPTF14hls.

Patlama sonucu ortaya çıkan ışık, patlamada saçılan maddelerin bileşimini ve hızını anlamak maksadıyla incelendi.

İnceleme sonucunda, bunun bir Tip IIp süpernova patlaması olduğu belirlendi. Keşifle ilgili her şey sıradan görünüyordu. Ta ki, birkaç ay sonra süpernova tekrar parıldamaya başlayana kadar.

Yıldızın, Palomar Rasathanesi Gök Araştırmaları tarafından 1954’deki patlamasında çekilen fotoğrafı (solda), 1993’deki çekilen 2. fotoğrafı (sağda). Süpernovalar genellikle birkaç ay süren bir parıldamanın ardından söner ancak iPTF14hls patlamayı 60 yıl civarı bir süre içerisinde 2 sefer patlama yaşadı. Arcavi et al. 2017, Nature. POSS/DSS/LCO/S. Wilkinson.

2-P tipi süpernovalar genellikle 100 gün kadar ışıldar. Ancak  iPTF14hls 600 günden fazla ışık saçmaya devam etti. Dahası, arşiv verileri, 1954’de tam da aynı noktada bir patlamanın daha olduğunu ortaya koydu.

Yarım asırdan daha uzun bir süre önce patlamış olan bu yıldızın, her nasılsa varlığını sürdürdüğü ve 2014’te tekrar patladığı anlaşıldı.

Kaliforniya Üniversitesi (Santa Barbara) ve Las Cumbres Rasathanesi başyazarı Iair Arcavi: “Bu patlama, süpernovaların nasıl gerçekleştiğine ilişkin bildiğimizi sandığımız her şeyi alt üst etmektedir.”

Konidaris tarafından yapılan bir cihaz, üç yılda beş kere sönüp-parlayan iPTF14hls’in yaydığı ışığı analiz etmede kilit noktasıydı.

SED Makinesi olarak isimlendirilen Konidaris’in cihazı, süpernovaları ve kısa ömürlü astronomik olayları hızlı bir şekilde sınıflandırma kapasitesine sahip. Konidaris ve Caltech’deki meslektaşlarının cihazı ilk yaptıkları dönemde, uzaydaki bu türden sözde geçici nesneleri sınıflandırmada yeni bir bakış açısı büyük bir ihtiyaçtı.

iPTF14hls iki yılda beşten fazla kez parlaklaştı ve tekrardan söndü. Bu daha önce hiç görülmemiş bir durum. Arcavi et al. 2017, Nature. LCO/S. Wilkinson.

Yıldız patlamaları, astronomlara evrenimizi oluşturan maddelerin kökenini anlamaları için çok büyük bir imkan sunuyor. Kim bilir, belki de Güneş Sistemi’mizin oluşmasını da bir süpernova patlaması tetiklemiştir.

Konidaris’e göre: “Ancak, çok da uzun olmayan bir süre evvel, kısa ömürlü göksel olguları tanımlamak; sınıflandırmak ve bize öğretebileceklerini belirlemekten daha kısa sürerdi. İşte tam da bu yüzden SED’i yaptık ancak bu tuhaf ‘zombi yıldız’ı incelememize olanak sağlayacağını hiç beklemedim.”

Gözlem Müdürü John Mulchaey de “Nick’in keşifteki rolü bize sahip olunan enstrümanların varlığının önemini gösterdi. Bu da çoğu üniversitede gitgide nadir görünen türden bir değer.” şeklinde eklemede bulundu.

Kaynak: www.phys.org

Yayın: Nature Journal

Çeviri: Ertuğrul Ceylan

KIZIL GEZEGENE MERAK: CURIOSITY

KIZIL GEZEGENE MERAK: CURIOSITY

26 Kasım 2011 yılında başlıyor hikâyemiz. NASA üssündeki görevliler son kontrolleri yapmaktalar. İnsanın her zaman daha öteye gitme merakının yarattığı itici güç, bu cesur insanları heveslendirmekteydi. Başarılı bir kalkış! Her şey kusursuz bir şekilde ilerlemekteydi. 352 milyon millik yolculuğunun ardından Curiosity, 6 Ağustos 2012’de Mars’a, Gale Krateri’ne iniş yaptı. Ardından aynı krater içinde bulunan yaklaşık 5500 km yüksekliğindeki Sharp Dağı’na doğru yola çıktı. Sharp Dağı’nın sahip olduğu çok katmanlı yüzey sebebiyle Mars’ın geçmişine ve olası mikrobiyolojik yaşam izlerine dair en fazla bilgiyi saklayan yerlerden biri olduğu düşünülüyor. Curiosity, 9 kilometrelik yolculuğunu 12 Eylül 2014 tarihinde tamamladı. Bu yolculuk sırasında binlerce fotoğraf çeken, birçok yerde sondaj yapan, çeşitli kum ve taş örnekleri toplayan robot, Dünya’ya Mars hakkında bir sürü bilgi gönderdi.

NASA’nın Jet İtki Laboratuvarında (Jet Propulison Laboratory) Curiosity’nin test edilişi

lk sondajını 9 şubat 2013 te yapan Curiosity daha sonrasında da bir çok sondaj gerçekleştirdi. Bu sondajlar sonucunda Mars toprağında Uranyum, Toryum, Potasyum gibi çok sayıda radyoaktif elementin yanı sıra Silikon, Oksijen, Demir, Magnezyum, Alüminyum, Kalsiyum gibi elementler de olduğunu saptadı. Curiosity’nin bulduğu Sülfür, Nitrojen, Oksijen ve Karbon mineralleri ise geçmişte veya günümüzde olası organik yaşam ihtimallerini arttırıyor.

Curiosity’nin yaptığı sondajlarda gördüğümüz en ilginç bulgulardan biri, Mars’ın yüzeyindeki toprak kırmızı olmasına rağmen, birkaç santimetre altındaki toprağın beyaz olması. Bunun sebebi ise, Mars toprağında bulunan Demir elementinin yüzeyde demir oksit oluşturması yani pas tutması. Bu durumun, Mars’ta çok eskiden oksijen yoğunluğunun daha fazla olduğunu ve bu yoğunluğa izin verecek bir atmosferin varlığını işaret ettiği bir takım bilim insanları tarafından düşünülüyor. Yüzeyden itibaren bulunan pas yoğunluğu üzerinden bölgede serbest dolaşabilecek oksijen miktarı inceleniyor.

Mars’ta suyun hikayesi

Curiosity’nin gönderdiği fotoğraflara baktığımızda, indiği bölgenin yakınlarında, toprakta çizgiler oluştuğunu görüyoruz. Çizgiler, yıllar önce burada akan su olduğunun bir göstergesi. Curiosity’nin bu bölgeden topladığı çakıl taşlarının şekil ve büyüklüklerini inceleyen bilim insanları, eskiden burada hızlı akan ve derin bir nehir olduğu sonucuna ulaştı. Ayrıca 160 km genişliğindeki Gale kraterinde, kumtaşı ve çakıl taşından oluşan çok sayıda yatak olduğu belirlendi. Buradan, kraterin yıllar önce sığ bir göl olduğu sonucunu çıkarıyoruz. Kraterde tespit edilen eğimli yataklar, dünyadaki göllere dökülen nehir yataklarını andırıyor.

Curiosity uzay aracının çektiği bir “Selfie”

ize bunca bilgiyi gönderen bu güzel aracın yolladığı fotoğrafların bir diğerinde de, 1 cm çapında kusursuz küre şeklinde bir kaya parçası göze çarpıyor. Bilim insanlarına göre bu taş antik göl kraterinde milyonlarca yıl önce su varken oluşan tortul kayaçlardan biri. Konkreasyon (katılaşma) yoluyla oluştuğu ve suyun hareketiyle aşınarak bu şekle geldiği tahmin ediliyor. 2004’te de benzer kayalar bulunmuş ve bunlara ‘’Yaban Mersini Kayası’’ adı verilmişti. Fakat bugüne kadar görüntülenen kayaların hiç birinin şekli bu kadar kusursuz değildi. Sharp Dağı’nın ise bu gölde milyonlarca yılda biriken çökeltiler etkisiyle oluştuğu düşünülüyor. Yüksek bölgelerden suyla kratere akan tortu biriktiği esnada güçlü rüzgârların etkisiyle dağı ortaya çıkarmış olabilir. Kraterde tortu birikimi ve rüzgâr erozyonunun on milyonlarca yıl sürdüğü tahmin ediliyor. Gölün büyüklüğü ve yaşanan jeolojik faaliyetler göz önüne alındığında mikrobiyolojik yaşam için yeterli şartların oluştuğu görülüyor.

Bir takım astrofizikçiye göre 3 milyar yıl önce Mars’ta çok büyük bir okyanus ve nehirler vardı. Bir zamanlar gezegenin yüzeyini kaplayan bu su, şu anda bir yeraltı okyanusunu oluşturmuş olabilir. Bunu yanı sıra atmosferde buhar ve kutuplarda buz şeklinde bulunduğu biliniyor. Ayrıca yüzeyde akışkan halde bulunduğu da gözlendi. Bilim insanları, sıvı halde bulunan suyun canlı mikroorganizmalar için son derece uygun bir ortam olduğunu belirtiyor. Mars kraterlerinde bulunan, çok yoğun bir tuz çözeltisi şeklinde olan su, yoğun bal kıvamındadır. Suyun içerdiği tuzların magnezyum perklorat, magnezyum klorat ve sodyum perklorat olduğu tahmin ediliyor.

Marsta yaygın bulunan ve klor içeren perkloratların suyun donma noktasını 0 santigrat dereceden -32 santigrat dereceye düşürerek, sıvı halde kalmasını sağladığı düşünülüyor. Eğer su perklorat içermeseydi, Mars’ın düşük atmosfer basıncı ve düşük ısısı altında sıvı kalamazdı. Mars’ta bulunan bu su zehirlidir. Fakat önümüzdeki yıllarda Mars’a gitmesi planlanan astronotlar için umut vaat ediyor. Astronotlar bu suyu işleyip içebilir, oksijen kaynağı ve roket yakıtı olarak kullanabilir.

İnsanlığın sahip olduğu merak var olmaya devam ettikçe, Mars’ı keşfetme konusundaki tutkumuz da sürmeye devam edecek. Attığımız her adımda bir gizemi daha çözüyoruz. Şimdilik pek çok konuda elimizde olanlar kısıtlı, ancak Curiousity ve ondan sonra gelecek araçlar yardımıyla Mars’ın gizemlerini çözmeye devam edeceğiz.

Gökyüzü Bülteni Dergisi, Türk Astronomi Derneği, Ocak 2016

Jüpiter Bize Çok Yakın

Eylül ayının başlarında bütün bir akşam boyunca gökyüzünde görmeye başladığımız Jüpiter gezegeni, 20 – 21 Eylül gecesi bize en yakın konumuna ulaşacak.

Jüpiter, gökyüzünde bulunduğu sürece birçok yıldızdan ve gökcisminden hep daha parlak olmuştur; ancak son zamanlarda biraz daha parlak olması da gözden kaçmamaktadır.

Dev gezegen, 20 – 21 Eylül gecesinde 1963 ve 2022 yılları arasındaki diğer konumlarından daha yakın bir konuma ulaşacak. Bu sırada Dünya’dan yaklaşık 592 milyon kilometre (368 milyon mil) uzaklıkta bulunacak ve -2.9 kadir parlaklığında olacak.

Jüpiter, Güneş’in batmasıyla beraber doğu ufku üzerinde yükselmeye başlıyor ve parlaklığı sayesinde onu gökyüzünde bulmak çok kolay. Dürbün veya küçük bir teleskopla bile koyu-renkli kuşaklarını, Büyük Kırmızı Lekesi’ni ve dört büyük uydusunu (Gelileo uyduları) rahatlıkla görebilirsiniz. Orta ve büyük teleskoplarla ise, bunların yanı sıra, daha küçük lekeleri ve bulutların oluşturduğu girdapları gözlemlemeniz mümkün.

Jüpiter’in yanı sıra bize en yakın konumuna ulaşan bir gezegen daha var: Uranüs. Gezegen, Jüpiter’den 5 kat daha uzakta ve daha soluk. 5.7 parlaklığındaki gezegeni çıplak gözle görmek zorken, dürbün veya küçük teleskoplarla görmek mümkün.

Uranüs’ü gökyüzünde bulabilmek için Jüpiter’den yararlanılabilir; öyle ki, Uranüs, Jüpiter’in yaklaşık 1 derece uzağında yer alıyor ve mavimsi-yeşilimsi rengiyle ve yuvarlaklığı nedeniyle yıldızlardan kolayca ayırt edilebilir.

Dünya’mızın uydusu Ay da o gece gökyüzündeki yerini alacak.

Kaynaklar: Science@NASASky&TelescopeEarthSky

Jüpiter Artık Akşam Gökyüzünde

Güneş Sistemimizin dev gezegeni Jüpiter’i uzun bir aradan sonra tekrar akşam gökyüzünde gözlemleyebileceğiz.

Görüntüde Jüpiter gezegeninin üzerinde, koyu renkli kuşaklar ve Kırmızı Büyük Leke görülüyor. (Resmi büyütmek için üzerine tıklayınız.) Telif Hakkı : NASA

Bir süredir Güneş’in doğmasına yakın veya gece yarısı gözlemlediğimiz Jüpiter, önümüzdeki akşamlarda Güneş’in batmasıyla birlikte doğu ufkundan yükselmeye başlıyor.

Hem profesyonel hem de amatör gökbilimcilerin yıllardır gözlemekte olduğu bu dev gezegeni, doğu ufku üzerinde, akşamın ilk saatlerinde fark etmeniz çok kolay; çünkü şu sıralarda -2 ve -3 kadir arasında parlaklıkta ve gökyüzündeki Venüs gezegeni dışındaki diğer gök cisimlerinden ve yıldızlardan daha parlak durumda.

Çıplak gözle kolaylıkla görebileceğimiz gezegenin, bir dürbün veya 6-7 cm.lik açıklığa sahip bir teleskopla, üzerindeki koyu renkli kuşakları, Kırmızı Büyük Leke’yi (Great Red Spot) ve Galileo olarak adlandırılan dört uydusunu görebilirsiniz. Yani 17. Yüzyılın başlarında İtalyan gökbilimci Galileo Galilei’nin küçük teleskopu ile yaptığı gözlemleri yapabilirsiniz.

27 Ağustos’ta Mars

Yıllardır ağustos ayında özellikle de 27 Ağustos’ta Mars’ın dolunay kadar büyük görüneceği ve bugün hayatta olan hiçbir kimsenin bu olayı tekrar göremeyeceği söylentileri etrafta dolaşır. Ve şu günlerde de yine bu yönde haberler etrafta dolaşmaktadır. Ancak bunların gerçekle hiçbir ilgisi yoktur.

Gerçek olan şudur ki; Mars, 27 Ağustos 2010’da Dünya’dan yaklaşık olarak 314 milyon kilometre uzaklıkta bulunacak ve günbatımından sonra batı ufkunda ‘ortalama parlaklıktaki küçük bir kırmızı yıldız’ gibi parlıyor olacak. Eğer yerini tam olarak bilmiyorsanız, onu gökyüzünde bulmanız bile zor olacaktır.

2003 Ağustos’ta Mars, 60.000 yıl içindeki en yakın konumda. Buna rağmen, gezegen parlak bir yıldıza benziyor ve dolunay kadar büyük değil. (Resmi büyütmek için üzerine tıklayınız.) Telif Hakkı : John Nemy & Carol Legate of Whistler, B.C.

Peki, bu söylentiler nasıl ve ne zaman ortaya çıktı? 2003’te Mars beklenmedik oranlarda büyüklüğü artmıştı. Aynı yılın 27 Ağustos günü Mars, Dünya’ya 60.000 yıl içindeki en yakın konuma (56 milyon kilometre) gelmişti. O gün insanlar, Mars’ın üzerindeki yanardağları, kıpkırmızı ovaları ve parlayan kutup buzullarını görmek için teleskoplarına sarıldılar. Aslında gözlemledikleri Mars, dolunay evresindeki Ay’dan 75 kat daha küçüktü.

Bazı insanlar bunu, ‘Eğer Mars, Ay’dan daha küçükse, Mars’ı 75 kere yakınlaştırdığımızda Ay’ın büyüklüğüne eşit olması gerekir.’ şeklinde açıkladılar. Ardından “75 kere yakınlaştırıldığında, Mars çıplak gözle Ay kadar büyük görünecek.” açıklaması, insanlar arasında e-postalarla “Mars, çıplak gözle Ay kadar büyük görünecek.” söylentisine dönüşerek hızla yayılmaya başladı. Bunun bir yanlış anlaşılma ya da ihmal olduğu söylenebilir.

27 Ağustos’ta ise Güneş battıktan hemen sonra batı ufku üzerinde parıldayan Venüs’ü hemen görebilirsiniz. Onun birkaç derece sağına doğru bakarsanız küçük, turuncu, yıldızımsı Mars’ı görebilirsiniz. Hatta daha iyi görebilmeniz için dürbün veya teleskop kullanmanız gerekli.

Gecenin ilerleyen saatlerinde ise Ay ve birkaç derece uzağında parlamakta olan Jüpiter’i gözlemleyebilirsiniz.

27 Ağustos 2010, gece yarısına doğru doğu ufku üzeri. (Resmi büyütmek için üzerine tıklayınız.) Telif Hakkı : EarthSky

İlgili bağlantılar:

Kaynaklar : Science@NASAEarthSkyBBC