gokyuzu.org

Şubat Ayı JWST Fotoğrafı

Geçtiğimiz günlerde yayınlanan şubat ayının, Ayın James Webb Uzay Teleskobu Fotoğrafı, NGC 2283 adlı sarmal galaksiyi bizlere gösteriyor. Bu galaksi, Canis Major (Büyük Avcı) takımyıldızında yer almakta ve yaklaşık 45 milyon ışık yılı uzaklıkta bulunmaktadır. Barred (çubuklu) sarmal galaksi olarak sınıflandırılan NGC 2283’ün merkezi çubuğu, gevşekçe sarılmış sarmal kollarla çevrilidir.

Bu yeni görüntü, Webb’in Yakın Kızılötesi Kamera (NIRCam) ve Orta Kızılötesi Enstrümanı (MIRI) gözünden NGC 2283’ü gösteriyor. Webb, bu görüntü için gerekli veriyi toplamak amacıyla NGC 2283’ü sadece 10 dakika inceledi; gerekli verileri ise farklı dört yakın kızılötesi filtreyle çekilen anlık görüntülerden oluşturdu. Bu filtreler, NGC 2283’ün parlayan yıldız popülasyonunun emisyonunu ve genç yıldızlar tarafından ısıtılan hidrojen gazı bulutlarının ışığını gözler önüne sermektedir. Ayrıca, poliaromatik hidrokarbonlar (PAH’lar) olarak bilinen kirli moleküller de NIRCam tarafından taranan dalga boyu aralığında ışık yaymaktadır. Bu görüntüde, belirgin difraksiyon örüntüleriyle dikkat çeken büyük, parlak yıldızlar, NGC 2283 ile aramızda bulunan, kendi galaksimizin birer sakinleridir.

Webb’in NGC 2283’ün yeni görüntüleri, yakınlardaki yıldız oluşturan galaksilerde; yıldızlar, gaz ve toz arasındaki bağlantıları anlamaya yönelik gözlem programı (#3707) çerçevesinde toplanmıştır. NGC 2283, Webb tarafından bu program için incelenen 55 yerel galaksiden yalnızca birisidir. Bu programda araştırılan tüm galaksiler, tek tek yıldız kümelerini ve gaz bulutlarını görünür kılacak kadar yakın ve devasa yıldız oluşturan galaksilerdir.

Bu yıldız kümeleri ve gaz bulutları, galaksinin zarif sarmal kollarını öne çıkaracak biçimde tamamen ortada sergilenmektedir. Genç yıldızlar tarafından aydınlatılan yoğun gaz düğümleri, NGC 2283’te aktif yıldız oluşumunun bir kanıtıdır ve soğuk hidrojen gazını, parlayan yıldızlara dönüştürmektedir.

Aktif yıldız oluşumu gösteren galaksiler, sıklıkla çekirdek çöküşü süpernovaları adı verilen muazzam yıldız patlamalarına ev sahipliği yaparlar. Tam olarak iki yıl önce, 28 Ocak 2023’te, NGC 2283’te SN 2023AXU adı verilen bir süpernova keşfedildi. SN 2023AXU, Tip II süpernovası olarak bilinen türde bir süpernova ve bu tür Güneş’ten en az sekiz kat daha büyük bir yıldızın çekirdeğinin çökmesi ve ardından yıldızın dış katmanlarının geri sıçraması ve patlamasıyla meydana geliyor.

Yıldız oluşumu süreci gazı yeni yıldızlara dönüştürürken, süpernovalar bu döngüyü tamamlar. Bir süpernovanın patlaması, gazı yüzlerce ışık yılı uzağa savurabilir ki bu olay da oksijen ve sodyum gibi elementlerin yıldız oluşum bulutlarını zenginleştirmesini sağlar. Zamanla, süpernova ile zenginleşmiş gaz, yeni nesil yıldızlara dahil olur böylece galaksilerdeki gaz ve yıldız yaşam döngüsünü devam ettirir.

Metnin aslını ESA üzerinden aşağıdaki linkten okuyabilirsiniz.

https://esawebb.org/images/potm2502a

Yine, Yeni, Yeniden: gokyuzu.org

4 Mart 2001, bugünden tam tamına 24 sene önce, Amatör Astronomi Topluluğu tarafından yürütülmekte olan Gökyüzü dergisinin teknolojinin ilerleyişi ile birlikte dijitalleşmesi gerektiği öngörülmüş, bu yolda önemli bir adım olan gokyuzu.org alan adı Sinan Kaan Yerli tarafından topluluk bünyesine kazandırılmıştı.

Sitenin aktif olarak kullanılmaya başlanması ise o kadar çabuk olmayacaktı. Faaliyete geçmesi için bir süre beklemesi gereken web sitemiz 2004 yılında ziyaretçilere açıldı.

(https://web.archive.org üzerinden ulaşılabilen en eski gokyuzu.org görüntüsü.)

Dönemin web sitesinde en güncel gökyüzü haberleri, gelecek ay gökyüzünün nasıl olacağı gibi bir amatör astronomun merakını besleyecek ve işine yarayacak içerikler bulunmaktaydı.

Astrofotoğrafçılık tarafında ise topluluk üyelerimiz tarafından çekilen ve ziyaretçilerimizin bize ulaştırdığı fotoğrafların yanı sıra. Nasa APOD’un gediklisi daimi üyemiz Tunç Tezel için ayrı bir sayfa bulunmaktaydı.

Şimdilerde onlarsız bir günümüzün geçmediği sosyal medyaların bu dönemlerde aktif olarak kullanılmadığı da düşünülürse Amatör Astronomi Topluluğu’nun yaptığı etkinliklerin duyurulması için gokyuzu.org’un son derece önemli olduğunu da belirtmek gerek.

Takvimler Nisan 2010’a yaklaşırken gokyuzu.org’u çok ciddi bir değişim bekliyordu.

Yepyeni tasarımıyla zamanın ruhunu yakalayan -hatta ötesine geçen- gokyuzu.org’un dark side’a geçtiğini söylemek yanlış olmaz.

Bu değişimin ardından yıllar boyunca yüzlerce etkinliğin duyurulduğu ve yüzlerce gökyüzü haberinin paylaşıldığı web sitemizi bir değişim daha bekliyordu. Başlıkta gördüğünüz “yeniden” kelimesi de gokyuzu.org’un sürekli kendini yenileyerek küllerinden doğmasını dile getiriyor aslında.

Takvimlerimiz Ekim 2016’yı gösterirken gokyuzu.org’da görselin de ötesinde köklü değişiklikler yaşandı. Bunlardan en önemlisi ise web sitemizin içerik üretme ve düzenleme konusunda bizlere kolaylık sağlayacak WordPress’e taşınmasıydı. (Fun Fact: dönemin gokyuzu.org tasarımcısı ve evrimagaci.org tasarımcısı aynı kişidir)

(Taşınmasının ardından arkaplan görseli olarak seçilen “Tabby’nin Yıldızı” günümüzde de arkaplan olarak kullanılıyor.)

Uzunca bir süre daha bu modern görünümü ile varlığını sürdüren web sitemiz, teknik aksaklıklar nedeniyle 2020’den bu yana kullanılamıyordu.
Ancak bu yazıyı okuduğunuza göre tahmin ediyorsunuzdur ki bir şeyler olmuş ve gokyuzu.org tekrar kullanıma açılmış.

Peki nasıl?

Öncelikle bu sürecin hiç de kolay olmadığını söylemem gerekiyor.

En başta sadece bir gaz ve toz bulutu yer alıyordu.

Zamanla ve daha önce elini wordpress’e sürmemiş bir üyenin yoğun emekleriyle iki hafta içerisinde sıfırdan şu an gördüğünüz tasarımına kavuştu.

Zor gibi gözükse bile asıl sıkıntılı olan kısım bu değildi.

Geçmişte yazılan bütün yazılar sitenin arşivinde tabii ki yer almalıydı.

Bu yüzden önce sitenin yedeklenmiş eski verilerine ulaşmayı denesek bile Raid5 ile korunması gereken veriler kurtarılamaz biçimde mahvolmuştu.

Madem durum buydu o zaman kollarımızı sıvayım işe bürünmemiz gerekti.

Önce Kaybolan tüm yazıları bulmamız gerekiyordu. Bunun için biçilmiş kaftan webarchive olmasa asla bunu başaramazdık.

WebArchive üzerinden tüm yazıların bir listesini çıkardık ve elimizde 860 satırlık bir tablo oluştu.

860 farklı yazının her biri WebArchive’de yer alıyordu ancak görselleri yedeklenmemişti.

Bu noktada kolları sıvayıp işe koyulduk. Her bir yazının içeriğinden yola çıkarak doğru görselleri bulmamız gerekiyordu. Bu işlemin tamamı bir iki kişi için fazla yük olacaktı ki aşağıdaki listede görebileceğiniz üyelerimiz imdadımıza yetişti.

  • Çınar Şahin
  • Arda Anbarcıoğlu
  • Müge Ancaza
  • Bade Soylu
  • Metin Rıfat Aksu
  • Deniz Kahveci
  • Özgür Yılmaz Bulut
  • Aysu Keseroğlu
  • Taha Keleş

Yoğun emekler, bol bol zaman ve google meet üzerinden sohbet ederken yaptığımız çalışmalar meyvesini verdi ve neredeyse bütün yazılar için gerekli işlemleri tamamladık.

Mart 2025’te Gökyüzü

1 Mart 2025 22.00, 15 Mart 2025 21.00, 30 Mart 2025 20.00 tarihlerinde ortalama gökyüzü görüntüsü. (Stellarium)

Oldukça soğuk geçen bir şubat ayının ardından havaların yavaş yavaş ısınmasıyla gözlemlere akın edecek gökbilim meraklılarını neler bekliyor?

1 Mart 2025 22.00, 15 Mart 2025 21.00, 30 Mart 2025 20.00 tarihlerinde gökyüzü. (Stellarium)

Güneybatı yönünde seyir zevki oldukça yüksek olan kış altıgenine Mars ve Jüpiter’in eşlik etmesiyle izlemeye doyulamayacak bir gökyüzü gözlemlenebilecek.

1 Mart 2025 19.30’da gökyüzü

Kış boyunca oldukça geç vakitlerde battığına şahit olduğumuz Venüs, Mart ayı boyunca daha erken batarak gözlemlenmesi gitgide zor bir hale gelecek. Uzun bir süre yakalaması şu günlerde olduğu kadar kolay olmayacak batı ufku üzerindeki Venüs’ü gözlemlemenizi tavsiye ediyoruz.

Carrington Olayı Nedir? Sebepleri ve Sonuçları

   Tarih 28 Ağustos 1859, henüz 1860 solar maksimumuna birkaç ay varken Güneşimizin üzerinde büyük miktarda Güneş lekesi belirmeye başlar. Bu lekelerin görünmesinin ardından 29 Ağustos’ta Kuzey Yarım Kürede New England, Güney Yarım Kürede ise Queensland’den bile gözlemlenebilen auroralar ortaya çıkar. Bu güneş lekeleri Richard Carrington tarafından 1 Eylül’de detaylı çizimler olarak kayda alınır.

1 Eylül 1859, saat yaklaşık sabah 11.00’de Richard Carrington ve Richard Hodgson birbirlerinden bağımsız olarak tarihte ilk defa bir güneş patlamasını gözlemlediler. Gerçekleşen koronal kütle atımından saçılan parçacıklar normalde Dünya’ya günler içerisinde ulaşırken bu sefer 17.6 saatte Dünyamıza vardı.

   Bu olay şu anda Carrington Olayı olarak isimlendirilen, insanlık tarihinde kayda geçirilmiş en büyük jeomanyetik fırtınaya yol açtı.

   Bu jeomanyetik fırtınadan kaynaklanan auroralar Dünya’nın büyük bir kısmında şahane bir ışık şovu olarak gözlemlendi. Auroraların Rocky Dağları çevresindeki altın madencilerini uyandırıp sabah olduğunu düşündükleri için kahvaltı hazırlamaya başlatacak kadar parlak olduğu söyleniyor. Aynı zamanda Kuzeydoğu Amerika’da yaşayan insanların aurora ışığı altında gazete okuyabildiği anlatılır.

   Ancak maalesef ortaya çıkan jeomanyetik fırtına sadece güzel görüntüler ortaya çıkarmakla kalmamıştır. 1859’un teknolojisinde bile jeomanyetik etkili akım sonucu özellikle telgraf hatlarında önemli sıkıntılar yaşanmış, telgraf direkleri etrafa kıvılcım saçmış ve bazı telgraf operatörleri sistemleri tarafından çarpılmıştır. Science Direct’te yayınlanan bir makalede yer alan telgraf raporunda bu akımların gücünü anlamaya yarayacak bir konuşma geçmekte.

      Boston operatörü (Portland operatörüne): Lütfen bataryanızı hattan [telgraf hattından] 15 dakikalığına tamamen kesiniz.

      Portland operatörü: Yapacağım. Şu anda bağlantı kesik.

      Boston: Benimki de kopuk, şu anda aurora kaynaklı akım ile çalışıyoruz. İletim sana nasıl geliyor?

      Portland: Bataryalı halinden daha iyi. Akım yavaş yavaş gidip geliyor.

      Boston: Benim akımım bazen çok güçlü, Aurora bataryalarımızı bazen nötralize edip bazen çoğalttığı için akım röle mıknatıslarımıza fazla gelebiliyor. Bataryalar olmadan daha iyi çalışabiliriz. Bu olaydan etkilenirken bataryasız çalışmamız lazım gibi.

      Portland: Tamamdır. İşimize devam edeyim mi?

      Boston: Evet. Devam et.

   Bu konuşma bundan sonra yaklaşık 2 saat boyunca devam etmiştir. Bu ve yaşanan bunun gibi olayları makalenin kendisinden araştırabilirsiniz.

   Carrington olayı her ne kadar dinlemesi ve anlatması etkileyici hikayeler yaratmış olsa da Dünya’daki manyetik olaylar ve Güneş arasındaki bağlantıyı kuran, Dünya’daki hayatın kaynağı Güneş’in aynı zamanda bu hayata karşı oluşturabileceği tehlikeyi gözler önüne seren, şimdiki ve gelecekteki insanlığın kulağına küpe etmesi gereken bir olaydır.

   19. yüzyıldan bu yana gelişen teknoloji ve elektriğe artan bağlılık sebebiyle bu tarz olaylar insanlık için çok daha büyük bir tehlike oluştursa da aynı teknoloji güneş patlamalarını daha iyi anlayabilmek ve jeomanyetik fırtınaları önceden tahmin edip gerekli önlemlerin alınabilmesini sağlamakta kullanılıyor. Solar Dynamics Orbiter (SOHO), Parker Solar Probe ve ESA’nın Solar Orbiter’ı gibi araçlar sürekli Güneş’i gözlemleyerek Güneş lekeleri, Güneş patlamaları ve koronal kütle atımlarının altında yatan mekanizmayı anlayabilmemizi sağlayan araçlardan sadece bazıları.

Kaynakça:

https://www.sciencedirect.com/science/article/pii/S0273117706000160#aep-section-id15

https://www.nasaspaceflight.com/2020/08/carrington-event-warning

https://www.scientificamerican.com/article/bracing-for-a-solar-superstorm

https://web.archive.org/web/20110305110813/http://news.nationalgeographic.com/news/2011/03/110302-solar-flares-sun-storms-earth-danger-carrington-event-science

Big Bang’den Sonraki En Büyük Patlama Keşfedildi!

Big Bang’dan sonra yaşanan en büyük patlama bilim insanları tarafından keşfedildi. Bu eşi olmayan patlama, 390 milyon ışık yılı uzaklıktaki Ophiuchus galaksi kümesinin merkezindeki süper kütleli kara delikte meydana geldi ve kendisinden önceki rekor patlamadan 5 kat daha fazla enerji saldı.

   Bu patlama o kadar güçlüydü ki kara deliğin etrafını saran sıcak plazmada bir oyuk açmayı başardı. Washington DC’de Birleşik Devletler Deniz Araştırma Laboratuvarı’nda çalışan ve bu konuda başyazar olan Simona Giacintucci “Bu patlama bir bakımdan 1980’de St. Helens Dağı’nda meydana gelen yanardağ patlamasının dağın tepesini parçalamasına benziyor. Buradaki temel fark patlamanın ‘kraterine’ on beş tane Samanyolu Gökadası’nı sığdırabiliriz’’ dedi.


Telif: X-ray: NASA/CXC/Naval Research Lab/Giacintucci, S.; XMM:ESA/XMM; Radio: NCRA/TIFR/GMRTN; Infrared: 2MASS/UMass/IPAC-Caltech/NASA/NSF

   Astronomlar bu keşfi NASA’nın Candra X-ışını Gözlemevi, ESA’nın XMM-Newton X-ışını Teleskobu, Avustralya’daki Murchison Widefield Array (MWA) ve Hindistan’daki Giant Metrewave Radyo Teleskobu (GMRT) aracılığıyla elde edilen X-ışını ve Radyo dalgaboyu verilerini kullanarak yaptılar. 

   2016’da Chandra’da yapılan gözlemler sonucu elde edilen veriler bu devasa patlamanın ipuçlarını ortaya çıkarmıştı. Norber Werner ve ekibi Chandra’nın çektiği fotoğraflardaki yıldız kümesinde alışılmadık bir kavisli kenarın bulunduğunu keşfettiler ve bu kısmın süper kütleli kara delikteki jet patlamaları[1] sonucu oluşup oluşmadığını araştırmaya başladılar. Fakat bu olasılığı yok saydılar çünkü kara deliğin böyle bir oyuğu oluşturması için çok büyük miktarda enerji gerekirdi.

     Simona Giacintucci ve ekibi yaptığı son çalışma ile bu devasa patlamanın ‘’gerçekten’’ yaşandığını kanıtladı. Giacintucci ve ekibi öncelikle bu kavisli kenarın XMM-Newton’la da saptandığını gösterdi ve böylelikle Chandra gözlemlerini doğruladı. Ekibin en önemli adımı ise bu kavisli kenarın aslında oyuğun ‘’duvarının’’ parçası olduğunu MWA ve GMRT arşivlerindeki yeni radyo verilerini kullanarak göstermeleriydi. Bu duvarlar radyo ışımalarıyla dolu bir alan oluşturuyorlardı. Bu ışıma ise ışık hızına yakın bir hızda hareket eden elektronlar tarafından oluşturuluyordu. Bu karadelik patlamasının şu ana kadar sona erdiği tahmin ediliyor çünkü bilim insanları elde ettikleri radyo verilerinde yeni oluşan jetlerin izlerine rastlamıyor. Chandra verileri bize bu ani kesilişin sebebini açıklayabiliyor. Bu veriler bize X-ışınları sayesinde görülen en yoğun ve soğuk gazın şu anda merkez gökadadan farklı bir konumda bulunduğunu gösteriyor

Kaynakça:

https://www.nasa.gov/mission_pages/chandra/news/record-breaking-explosion-by-black-hole-spotted.html

https://phys.org/news/2020-02-astronomers-biggest-explosion-history-universe.html

Çeviri: Alperen Ergün

Uzayda hasta olmak: astronotlar arasında bir salgın olsa NASA ne yapardı?

Koronavirüs, COVID-19, tüm dünyaya yayılırken böyle bir virüsün uzayda yayılması durumunda neler olabileceğini düşünmek ilginç olabilir.

Tarih boyunca uzayda hasta olan astronot sayısı oldukça azdır. NASA’nın Uzay Mekiği programında altı kez cerrah olarak görev yapmış, günümüzde ise Baylor Tıp Fakültesi Uzay Tıp Merkezi’nde nöroloji ve uzay tıbbı alanında doçent olan Jonathan Clark, Space.com’a verdiği demeçte Dünya’dan çok uzaklarda süzülüren astronotların üst solunum yolu enfeksiyonlarına (ÜSYE) veya soğuk algınlığına, idrar yolu enfeksiyonlarına ve cilt enfeksiyonlarına katlandıklarını belirtti.

1968’deki Apollo 7 görevi sırasında mürettebat uzayda soğuk algınlığına yakalanmış ve Clark’a göre bunun “önemli bir etkisi” olmuş. Büyük ihtimalle Komutan Wally Schirra, mekiğe hafif bir soğuk algınlığı varken gelmiş ve hastalığı mürettebatın geri kalanına bulaştırmış. Clark, astronotların ellerindeki bütün ilaç ve peçeteleri bitirdiklerini ve atmosfere geri giriş yaparken kasklarını giymeyi reddettiklerini söylüyor.

Hep birlikte soğuk algınlığı geçiren Apollo 8 ve Apollo 9’daki astronotlar da benzer zorluklar yaşamış. NASA, bu görevlerin ardından mürettebatın sağlığını ve güvenliğini sağlamak için diğer insanlarla sınırlı ve kontrollü temas gerektiren bir uçuş öncesi karantina uygulamasına geçmiş.

Peki uzay uçuşunun ilk günlerinden ve bu uzay hastalıkları vakalarının ilk günlerinden beri işler nasıl değişti? Astronotların bir gün potansiyel olarak daha zorlu dünya dışı ortamlarda daha ciddi hastalıklarla mücadele etmesi gerekebilir mi?

Hastalıkların uzaydaki farkı

Tıbbi acil durumlar söz konusu olduğunda, astronotlar şimdiye kadar Dünya-uzay iletişiminde artan imkanlar sayesinde tıbbi yardıma uzaktan erişebildiler. Hatta dünyadaki tıp uzmanları bir keresinde uzay istasyonunda kan pıhtısı sorunu yaşayan bir astronota bile yardım etmeyi başardılar.

Bununla birlikte, insanlar uzaya gittiğinde enfeksiyonların yayılma yollarıyla virüslerin ve hastalıkların vücutta davranış şekilleri değişime uğrar. Fırlatmanın fiziksel etkilerinden Dünya’nın yer çekiminin olmadığı kapalı bir ortamda yaşamaya kadar pek çok etkenden dolayı soğuk algınlığı gibi “sıradan” hastalıklar bile astronotlar için oldukça farklı görünebilir.

Uzay uçuşu, insan vücudunda bilim insanlarının hala tam olarak anlamaya çalıştığı bazı garip değişimlere sebep olur. Akla ilk gelen örneklerden birisi olarak fiziksel açıdan çok zorlayıcı bir eylem olan Dünya’dan roketle fırlatılmayı verebiliriz. Fırlatma, hareket hastalığına neden olabilir, uzamsal yönelim ve koordinasyonu etkileyebilir. Uzaya çıktıktan sonra stres hormonu seviyelerindeki değişiklikler ve uzay uçuşunun diğer fiziksel yansımaları bağışıklık sistemimizde değişikliklere neden olur. Dünya’da “iyi bir bağışıklık sistemine” sahip olmaya alışık bir astronot, uzaydayken hastalıklara ve hatta alerjik reaksiyonlara daha duyarlı olabilir.

Clark’ın açıkladığı gibi, grip ve hatta koronavirüs gibi virüsler de Uluslararası Uzay İstasyonu’ndaki gibi bir mikro yer çekimi ortamında daha kolay bulaşabilir. “Yer çekiminin olmaması parçacıkların çökmesini engeller, böylece parçacıklar havada asılı kalırlar ve daha kolay bulaşabilirler. Bunu önlemek için bölmeler havalandırılır ve HEPA filtreleri parçacıkları ortamdan uzaklaştırır.”

Ek olarak, bilim insanları “uyuyan” virüslerin uzay uçuşunun oluşturduğu koşullara tepki verdiğini ve herpes simpleks gibi virüslerin uzay uçuşu sırasında yeniden aktifleştiğini veya “uyandığını” buldular. Ayrıca Clark’ın dediği gibi, devam eden çalışmalar uzayda artan bakteriyel virülansın (mikroorganizmaların hastalığa neden olma yeteneği) antibiyotik tedavilerinin etkisini azaltabileceğini gösteriyor.

Clark, sözlerine “Aynı Dünya’daki viral salgınlarda olduğu gibi, bu durumda da viral yayılmayı önlemek için kullanılabilecek antiviral ilaçlar var. Ayrıca, gezegensel görevler söz konusu olduğunda mürettebat, tıpkı Ay’dan dönen ilk görevlerdeki mürettebata yapıldığı gibi, Dünya’ya döndükten sonra izole edilirdi, ” şeklinde devam etti.

Peki astronotlar ne yapardı?

İster uzay istasyonundaki kapalı alanda ya da gelecekteki Ay veya Mars habitatlarında olsun, salgın hastalıklar önceki nesillerin astronotlarında olduğu gibi gelecekteki astronotlar için de çok gerçek tehditler oluşturacaktır.

Peki, bizler COVID-19 olarak bilinen koronavirüs hastalığının dünyaya yayılmasını en iyi nasıl durduracağımızı bulmak için debelenirken astronotlar uzayda ne yapardı? Belirttiğimiz gibi, bu tür virüslerin uzayda daha kolay yayılabileceğini ve tedavilerin daha farklı şekillerde işleyebileceğini biliyoruz. Uzayda hasta bir astronotu karantinaya almanın ek zorlukları olsa da, Clark bunun muhtemelen uygulanacak prosedürlerden biri olacağını öne sürüyor.

Clark, “Dar alanlarda karantina uygulamak zordur, fakat ÜSYE hastası bir astronot, hastalık belirtisi gösterdiği sürece uyuduğu yerde izole edilirdi. Hastalığın yayılmaması için maske takardı ve uygun tedaviye karar verebilmek için gerekli tahliller yapılırdı,” diye belirtti.

Astronotların uzay istasyonunda karantinaya alınması gerekmesi durumunda, ISS’in ABD bölümünde HEPA filtrelerinin olduğunu, ayrıca bütün yüzeylerin düzenli olarak temizlendiğinin yanı sıra mikrobiyal izleme yapıldığını da sözlerine ekledi.

Bununla birlikte, gelecekteki Ay veya Mars habitatlarında bir salgın söz konusu olması halinde tam olarak ne olabileceğini söylemek şu an için imkansız, çünkü henüz Ay’a geri dönmüş veya Mars’a insanlı bir görev göndermiş değiliz. Ancak, Clark’ın önerilerini ve Apollo döneminin tarihsel örneklerini göz önünde bulunduracak olursak, astronotlar da büyük olasılıkla karantina gibi Dünya’da aldıklarımıza benzer önlemler alırlardı demek mümkün.

(Chelsea Gohd’un yazısından çevrilmiştir.)

Çeviri: Pınar Varol

Dünya’nın “Ziyaretçi” Minik Uydusu

15 Şubat tarihinde Catalina Sky Survey(CSS) astronomları Kacper Wierzchos ve Teddy Pruyne Dünya’ya ait yeni bir uydu keşfettiler. 2020 CD3 olarak bilinen ve Dünya’dan 300,000 kilometre uzakta olan bu yeni uydunun parlaklığı ise 20. kadirden bir yıldız kadar. Elde edilen parlaklık ve uzaklık bilgilerinden yararlanan astronomlar uydunun çapını 2-3.5 metre olarak hesapladılar, yani tıpkı bir fil kadar!

Lemmon Dağı’nın zirvesinde bulunan Catalina Survey Teleskobu’yla yapılan gözlemler ve Amerika ile Avrupa’da bulunan gözlem evlerinde yapılan ölçümlerden sonra asteroitin Güneş’in etrafında dönmediği anlaşıldı. Aksine, asteroit Dünya’nın etrafında dönüyor, fakat bu sadece geçici bir süreliğine. Asteroitin yörüngesi üzerindeki geriye dönük çalışmalar sonucunda astronomlar, 2016 veya 2017’de Dünya’nın kütle çekiminin uyduyu etkisi altına aldığı sonucuna ulaştılar. Bu etki sonrası artık geçici bir minik uydumuz olmuştu.
  

Bu uzay taşının, gezegenimizin kütle çekimine yakalanışında önemli olan iki faktör: Dünya’dan görece yavaş hareket etmesi ve Güneş’ten sadece biraz uzak bir yörüngede dolanması. Uzun bir süre boyunca tespit edilememesinin sebebi ise çok küçük ve sönük oluşuna ek olarak Dünya etrafında değişen eksantriklikte ve değişen eğimlerde dönmesiydi.

Ard arda çekilen bu 4 karede, 2020 CD3’ün izlediği rotayı ve Dünya’nın kütleçekim etkisiyle nasıl kıvrıldığını görebilirsiniz.


Görünen o ki, bir süreliğine Dünya da Mars gibi iki uyduya sahip olacak; fakat yeni uydumuza yaptığımız ev sahipliği kısa sürecek. Gezegenimiz bu ziyaretçi uyduyu Nisan civarlarında serbest bırakacak. Uydumuz normal yörüngesine dönerken Dünya da eski tek uydulu hayatına dönecek.
  
Keşfin ilk zamanlarında asteroitin bir roket ek motoru olduğuna dair şüpheler yörünge bilgisinin ve spektrumunun ayrıntılı analizi sonucunda açıklığa kavuştu. Bu analizler sonucunda minik uydumuzun Güneş radyasyonu kaynaklı basınçtan az miktarda etkilendiği bulunmuştur. Böyle bir sonuca ulaşabilmemiz için incelediğimiz objenin büyük bir uzay çöpü değil de yoğun ve kayaç bir parça olması gerekiyordu.
  
Dünya’ya yaklaşan her asteroit için küçük de olsa bir çarpışma ihtimali vardır. Neyse ki şu sıralar böyle bir şeyin yaşanmayacağını söyleyebiliriz. Minik uydumuzun önümüzdeki iki ay içinde Güneş-Ay ikili sisteminden çıkarak tekrar Güneş etrafında bir yörüngeye girmesi sürecinde böyle bir çarpışma tehlikesi bulunmuyor.
  
Jet Propulsion Laboratuvarının Sentry projesindeki bir analiz, önümüzdeki yüzyıl için çarpışma olasılığını %3 olarak açıklamıştır. Muhtemelen, tıpkı Dünya’ya yaklaşan diğer asteroitlerde olduğu gibi, asteroitin yörüngesi üzerinde yapılacak olan yeni gözlemler çarpışma tehditinin daha az olduğunu gösterecektir.
  
Gelecekte 2020 CD3 ile gezegenimiz arasında ne olacağı sadece tahminlerden ibaret. İhtimaller arasında asteroitin Dünya’nın kütle çekimine yeniden yakalanması ve serbest kalması var. Ya da belki de bir çarpışma! Merak etmeyin, eğer Dünya’ya çarparsa bundan zarar görmeyeceğiz. Ziyaretçi uydumuz boyutundaki asteroitler genellikle atmosfere giriş yaptıkları zaman küçük parçalara ayrılırlar. Elimizdeki en kötü senaryo, asteroitin küçük bir meteorit olarak yeryüzüne inmesi.
  
Aslına bakılırsa, 2020 CD3 Dünya’nın ilk minik uydusu değil. 2006 yılında Catalina Sky Survey astronomu Eric Christensen 2006 RH120 uydusunu keşfetmişti. O da tıpkı 2020 CD3 gibi gezegenimizin kütle çekimine yakalanmıştı. Neredeyse bir yıllık bu yakalanıştan sonra yollarımız ayrıldı.

2006 RH120 ve 2020 CD3 gezegenimizin ilk yıllarından itibaren kütle çekimi tarafından yakalanan ve bırakılan minik uyduların sadece küçük bir kısmını temsil ediyor. Bazı astronomlar 9 Şubat 1913 yılında gerçekleşen büyük göktaşı yağmurunun, Saskatchewan’dan Bermuda’ya kadar görülebilen bir göktaşı geçişi, eski bir minik uydunun parçalanışı sonucu gerçekleştiğinden şüpheleniyor.
  
Umuyoruz ki bu iki minik uydu hakkında gelecekte yapılacak olan çalışmalar bizlere daha çok şey gösterecek. Belki de bir sonraki uydu ile yolumuz kesiştiği zaman sadece bu uyduya adanmış bir uzay göreviyle onu tespit edebilecek ve üzerinde ölçümler yapıp örnekler toplayabileceğiz. Sonuçta ona ulaşmak için fazla yol gitmemize gerek olmayacak.
  
Eğlenceli bir kısım olarak amatör astronom David Branchflower insanların uydumuz için en sevdikleri ismi oylamaları amacıyla bir anket düzenledi. 464 kişinin katıldığı bu ankette en çok sevilen isim ‘’Mini-Moo’’ olurken onu ikinci sırada “Moon 2” takip etti.
  
2020 CD3, bu ay itibariyle Çoban takımyıldızının önünden geçerken hızlıca sönükleşiyor (23 kadir). 11-12 Mart tarihlerinde şişkin ay (ya da Moon 1 mi demeliydik) uzaktan da olsa küçük kardeşi ile aynı yerde, Başak takımyıldızının 40 derece güneyinde, olacak. Gezegenimizin bu ziyaretçi uydusu gözlerimizi kamaştıracak kadar veya romantik şiirlere ilham verecek kadar parlak olmayabilir, ama en azından bir an için yukarı bakıp orada iki tane uydunun olduğunu hayal edebiliriz. Tabii bunun için fazla zamanımız yok, çabuk olmalıyız!

Kaynak: https://skyandtelescope.org/astronomy-news/observing-news/earths-mini-moon/

Çeviri: İremnaz Yücel

Ay nasıl oluştu? Yeni araştırma geçmişe ışık tutuyor

Dünya’nın uydusu Ay’ı nasıl elde ettiği uzun zamandır tartışılan bir soru. Ay’ın vaktiyle Dünya ile Theia adı verilen kayalık bir cismin çarpışmalarından ortaya çıktığını savunan dev çarpışma teorisi ise olası açıklamalar arasında en öne çıkan aday. Ancak bunun nasıl gerçekleştiğine dair ayrıntılar belirsiz ve bilim insanlarının hala açıklayamadıkları birçok gözlem var.

Çarpışmaya dair en büyük gizemlerden birisi Ay’ın neden Theia’dan ziyade Dünya’nın neredeyse tıpatıp aynısı olduğuydu. Şimdi ise Nature Geoscience’da yayınlanan yeni bir çalışma geçmişe ışık tutuyor.

Dev çarpışma teorisine göre, Theia kabaca Mars büyüklüğünde veya biraz daha ufak, Dünya’nın çapının yarısı kadar bir cisimdi ve 4,5 milyar yıl önce henüz gelişmekte olan Dünya’ya çarptı. Bu çarpışma sonucunda magma okyanuslarını oluşturmak için yeterli miktarda ısı ortaya çıktı ve Dünya’nın yörüngesine ileride Ay’a dönüşecek olan çok fazla toz ve döküntü püskürdü.

Teori, Dünya ve Ay’ın birbirleri etrafında dönme şeklini ve hızını açıklıyor. Dünya ve Ay gelgitsel şekilde birbirlerine kilitliler, yani Dünya’nın etrafında dönerken Ay’ın hep aynı yüzü ona dönük oluyor. Zaten bu nedenle Çinlilerin Chang’e 4 adlı uzay araçlarını 2019’da Ay’ın karanlık yüzüne indirmeleri çok büyük bir başarıydı. Ay’ın bu yüzüyle Dünya’dan direkt iletişim kurmak asla mümkün değildir.

Ay ve Dünya’nın kompozisyonları neredeyse aynıdır. En önemli farklılıklar Ay’da demirin ve su üretmek için gerekli olan hidrojen gibi daha hafif elementlerin daha az miktarda var olması. Dev çarpışma teorisi bunun nedenini açıklıyor. Ağır demir elementi Dünya üzerinde kalırdı, çarpışma ve uzaya fırlatma sırasında üretilen ısı ise hafif elementleri kaynatırken, Dünya ve Theia’nın geri kalanı birbirine karışırdı.

Ay’ın oluşumuna yol açan olaylar, bilgisayar modelleriyle yeniden canlandırıldı. Tüm gözlemlere en iyi şekilde uyan modeller, Ay’ın yaklaşık %80 oranında Theia kökenli malzemeden oluşması gerektiğini gösteriyor. Öyleyse Ay neden bu kadar çok Dünya’ya benziyor?

Bu durum Theia ve Dünya’nın başlangıçta aynı bileşime sahip olmasıyla açıklanabilir. Fakat bu çok olası görünmüyor, çünkü Güneş sistemimizdeki bildiğimiz bütün gezegenlerin kendilerine has bileşimleri var ve cismin Güneş’ten ne kadar uzakta oluştuğuna bağlı olarak küçük farklılıklar gösteriyorlar.

Başka bir açıklama, iki cismin birbirine karışmasının beklenenden çok daha yoğun olması ve böylece Ay’da Theia’nın imzasının daha silik olarak kalması. Ancak bu durum da gerçekte olandan çok daha şiddetli bir çarpışma gerektireceği için olası değil.

Yeni çalışma, bu ikilemi Dünya’nın ve Ay’ın daha önce düşünüldüğü kadar birbirine benzemediğini göstererek çözüyor. Araştırmacılar, Apollo astronotlarının Ay’dan getirdikleri taşlardaki oksijen elementinin izotoplarının dağılımını çok yüksek bir hassasiyetle incelediler. Kimyada, herhangi bir elementin atom çekirdeği, protonlar ve nötronlar olarak bilinen parçacıklardan oluşur. Bir elementin izotoplarının çekirdeğinde aynı sayıda proton vardır, ancak nötron sayısı farklıdır. Bu durumda, sekiz protonu ve on nötronu olan oksijen izotopu O-18, sekiz protonu ve sekiz nötronu ile çok daha yaygın O-16’dan biraz daha ağırdır.

Çalışma, Dünya ve Ay’ın oksijen izotop bileşimlerinin aslında hiç de aynı olmadığını, yani arada küçük bir fark olduğunu gösteriyor. Dahası, Ay yüzeyinden veya kabuğun altındaki bir katman olan mantodan alınan kaya örneklerine baktığımızda fark iyice artıyor. Buradaki oksijen izotopları Dünya’dakilerden daha hafif. Bu çok önemli, çünkü karışık döküntüler nihayetinde kabuğa çökmüş olmalı, derin iç kısımlarda ise daha fazla Theia parçası yer almalı.

Yani Theia ve Dünya aynı değildi, Ay ve Dünya da aynı değil. Ancak bu sonuçlar bize Theia’nın kendisi hakkında da biraz bilgi veriyor. Yer çekimi nedeniyle, Güneş’e daha yakın olan ağır izotoplardan biraz daha fazla olması beklenebilir. Dünya ile karşılaştırıldığında, Theia’nın hafif oksijen izotoplarına sahip olmasını bekliyoruz. Bu da Dünya’ya nazaran Güneş’ten daha uzak bir noktada oluştuğu anlamına geliyor.

Bu çalışmadan elde edilen sonuçlarla dev çarpışma teorisi, Ay’ımızın oluşumunu açıklamada başka bir engeli daha aştı, üstelik Theia’nın kendisi hakkında bir şeyler daha öğrenmiş olduk.

(Christian Schroeder’in The Conversation’daki yazısından çevrilmiştir.)

Güneş’in Önünden Bir Merkür Geçti!

11 Kasım tarihinde transit adını verdiğimiz Merkür Geçişi gerçekleşti. Gözleme fırsatı buldu iseniz Güneş’in yüzeyinde sanki küçük bir noktanın ilerleyişi karşısında sizler de hayran olmuşsunuzdur. En azından öyle tahmin ediyorum.  Aslında kısa süre önce, 2016 yılında da gerçekleşen bu olaya bir daha 2032 yılında denk geleceğiz. E tabi ki Merkür ve Dünya’nın yörüngeleri örtüşmediği ve Merkür’ün iç gezegen olmasından kaynaklı Güneş’in önünden tın tın tın ilerleyişini görebilirsiniz.

NASA’nın Günün Gökbilim Görüntüsü (APOD) sitesinden (linke tıklayarak ulaşabilirsiniz) aldığım aşağıdaki fotoğraf, 10 Kasım 2019 tarihinde paylaşılmış ve Belçika’da çekilmiş. 7 Mayıs 2003 tarihindeki Merkür geçişine ait olan fotoğraf, 15 dakika arayla 23 pozlamadan oluşmaktadır. Zaten bu geçiş 5 saat sürmüştü. Fotoğrafta sağ tarafta görünen siyahlıklar ise Güneş lekeleri.

Gelelim 11 Kasım’da gerçekleşen geçişe. NASA’nın APOD sitesinde 13 Kasım tarihinde yayınlanan aşağıdaki büyüleyici görseli inceleyelim. Ortasında gördüğünüz küçük, siyah noktamız aslında Merkür. Yüksek çözünürlüklü teleskopik fotoğraf, 61 renklendirilmiş net video karesinden oluşmuştur. Üzerinde düzensiz bir şekilde bulunan, fotosferik konveksiyon* ile enerji ileten hücremsi yapıları görebilirsiniz. E tabi bu karmaşada Merkür’ün silüeti göz önüne çıkıyor. Bu manzarayı sadece Merkür ile değil diğer bir iç gezegen olan Venüs ile de gözleyebiliriz. Güneş’in 200 kat küçük yarıçapına sahip bu silüeti ise 21.yüzyılda 14 kez gözlemleme fırsatı bulurken, bunlardan dördüncüsünü Pazartesi günü gözledik. Bir sonraki için 13 Kasım 2032’de görüşmek dileğiyle. Gökyüzünüz açık olsun !

Fotosferik Konveksiyon: Fotosfer, yıldızların ışık saçan tabakalarına verilen isimdir. Konveksiyon ise bir ısı(enerji) iletim yoludur. Yıldızlarda konveksiyon ve radyasyon bölgesi gibi enerji iletim bölgeleri bulunur, fotosferik konveksiyon denilen olayda ise enerji konveksiyonel olarak aktarılır ve yıldızların ışık saçmasına sebep olan fotonlar üretilir.

Yazan: Aylin Açıkgöz

Nobel Ödüllü Fizikçiye Göre İnsanlar Asla Bir Ötegezegende Yaşayamayacak

“Gerçek şu ki: Dünya’da işleri berbat ediyoruz ve burada işimiz bittiğinde başka bir gök cisminde yaşayabileceğimiz fikrini hevesle sahipleniyoruz.” Bu ifade, bu seneki Nobel fizik ödülünün sahiplerinden biri olan ve Güneş türünde bir yıldızın yörüngesinde dönen ötegezegen keşifleri nedeniyle bu ödüle layık görülen astrofizikçi Michel Mayor’un fikri.

“Ötegezegenlerden(Güneş sistemi dışındaki gezegenler) bahsediyorsak daha net konuşmalıyız: Oralara göç etmeyeceğiz.” diyor Mayor, Agence France-Presse’ye verdiği röportajda. “Eğer bir gün Dünya’da yaşam mümkün olmazsa başka gezegenlere gideriz.” argümanlarını bitirmesi gerektiğini düşündüğünü söylüyor. 

Bilinen bütün ötegezegenlere ulaşmanın çok zor olduğunu belirtiyor. “En iyimser bakış açısıyla bakarsak yaşamaya elverişli gezegenler o kadar da uzakta değil. Mesela birkaç ışık yılı uzak diyelim, ki bu çok da uzak sayılmaz; hala mahallemizde sayılır, ama oraya gitmek için gereken zaman kayda değer derecede fazla.” diye devam ediyor Mayor.

1995 Ekiminde Didier Queloz ile beraber yaptıkları ilk ötegezegen keşfi nedeniyle bu sene Nobel ödülünün yarısını paylaştılar. Güney Fransa’daki Haute-Provence Gözlemevinde o dönem yeni geliştirilmiş olan cihazları kullanarak Jüpiter’e benzer bir gaz devi gezegen keşfettiler ve ismini de 51 Pegasi b. koydular.

O zamandan beri Samanyolu Gökadası’nda 4 binden fazla ötegezegen keşfedildi, ama görünen o ki hiçbiri ulaşılabilecek mesafede değil.

Kaliforniya Üniversitesi’nden Gezegen Astrofiziği profesörü Stephen Kane de Mayor ile aynı fikirde. “Üzücü gerçek şu ki, insanlık tarihinin bu safhasında bütün yıldızlar bize sonsuz uzaklıkta. Dünya’nın uydusuna ulaşmakta bile, insanlar olarak zorlanıyoruz.” diyor Kane.

“Önümüzdeki 50 yıl içerisinde Mars’a insan gönderebiliriz belki, ama insanlık gelecek birkaç yüzyıl içerisinde Jüpiter’in yörüngesine gidebilse gerçekten çok şaşırırdım.” diyor Kane. Güneş Sistemi dışındaki en yakın yıldızın uzaklığı, Jüpiter’e olan uzaklığımızın 70 bin katı olduğu için “şu anda bütün yıldızlar bize ulaşılamaz uzaklıkta.”

Tabii, insanlar diyebilir ki: Ulaşana kadar her şey ulaşılmaz geliyordu, kıtalar arası uçuşlar gibi. Fakat “Bu durumda yıldızlara ulaşmak için gerekli olan fiziğe hakim değiliz, ki eğer varsa: Kütle, ivme ve enerji arasındaki ilişkide kökten bir değişime ihtiyacımız olacak.” diye ekledi Kane.

“Sonuç olarak  işte burada Dünya’dayız, ve çok uzun bir zaman bunun değişmesi olası değil. Gezegenimize iyi bakmalıyız, o çok güzel ve kesinlikle hala yaşanılabilir.” diyor Mayor, AFP’ye.

Kaliforniya’daki Foothill Koleji Astronomi Bölümü eski başkanı Andrew Fraknoi de yakın gelecekte bu yıldızlara ulaşamayacağımıza katılıyor ama ekliyor: “Ben asla, yıldızlara ve yaşanabilir gezegenlere hiçbir zaman ulaşamayacağımızı söylemezdim. Kim bilir teknolojimiz 1 milyon yıllık bir süre içinde nasıl evrilecek. “

Kaynak: https://www.space.com/will-we-ever-live-exoplanet.html

Çeviri: Mert Toros