ODTÜ AAT ekibi olarak Van’ın Edremit ilçesindeki ilkokul, ortaokul ve lise öğrencilerine eğitim vermek üzere, 1 Ekim 2017’de sabah saatlerinde yola çıktık. İki adet teleskobumuzla, çocuklara dağıtmak üzere taşıdığımız kalem ve defterlerle Ankara Garı’na varmamızın ardından Tatvan’a gitmekte olan trenimizde bol bol sohbet edip, go oynayıp, kitap okuyarak zevkli bir yolculuk geçirdik. Kayseri’de hava yavaş yavaş kararırken, ekim ayında olmamıza rağmen karlı olan Erciyes dağını izledik, tarihi tren garında inip hızlıca garda gezindik. Sivas’a geldiğimizde ise hava tamamen kararmıştı; uyandığımızda kendimizi Muş’ta, Mezopotamya’nın uçsuz bucaksız ovalarında bulduk. Sonunda Tatvan’a ulaştığımızda, neredeyse 26 saattir yoldaydık. Van’a giden ilk minibüse bindik ve yolda gerçekten de gölden çok denizi andıran Van Gölü’nü seyrettik. Sabahın erken saatlerinde uyanıp Edremit’teki Van Kültür Koleji’ne doğru yola çıktık, yolda Batman’dan gelen Mezopotamya Astronomi Derneği üyesi Hasan Çetres arkadaşımız da bize katıldı. İlkokul ve ortaokullulara öncelik verdiğimiz öğrencilerin bir kısmına sunumlarımızı yaptık.
‘’Denizyıldızları gökten mi düşer?’’ gibi tatlı soruları yanıtlamaya çalışırken zaman bizim için de eğlenceli geçti. Özellikle küçük yaştaki çocukların ilgilerini görmek bizi çok mutlu etti. Öğlen saatlerinde Güneş teleskobuyla birçok öğrenciye ve öğretmene Güneş gözlemi yaptırdık. Ertesi sabah Van kahvaltımızı yaptıktan ve bir Van kedisiyle karşılaştıktan sonra okula vardığımızda, bu kez ortaokul öğrencilerinin yanında lise öğrencilerine de sunumlarımızı yaptık. Çocuklara getirdiğimiz kalem, defter ve çıkartmaları dağıtarak astronomiye ve bilime ilgilerinin artmasını sağlamaya çalıştık. Gün boyu havanın açtığı bir anı yakalamak için fırsat kolladık ve Güneş’in bulutlardan çıktığı her an gözlem yaptık. Dersler bittikten sonra, gece gözlemine kadar bazı çocuklarla okulda kaldık ve onlarla daha uzun sohbet etme imkânı bulduk.
Gecenin sonunda birçok öğrenci bize astronot, astronom ya da astrofizikçi olmak istediklerini söylediler ve bizim astronom/astrofizikçi olma eğitimimizin nasıl başladığını anlatıp onlara yol göstermemizi istediler. Gece gözlemi sırasında tüm öğrencilere, öğretmenlere ve velilere Ay gözlemi yaptırdık. Şansımıza Ay dolunay evresindeydi ve tertemiz bir hava vardı. Açık olmasının yanında hava o kadar soğuktu ki, gözlem sırasında ısınmak için halay çeken bir grup bile oldu! Zaman zaman bulutlar gelmesine rağmen lazerle kuzeyi ve takımyıldızları bulmayı öğrettik. Gözlem biter bitmez yola koyulduk ve sabah Tatvan’dan kalkacak olan trenimize gitmek için Tatvan’a gidip, geceyi bu aşırı soğuk ilçede geçirdik. Sabah 7’de bindiğimiz tren Malatya’ya vardığında, trenin jeneratörü bozulduğundan yaklaşık bir buçuk saat tren garında mahsur kaldık. Yolculuğun kalanı ise sorunasuz geçti ve sonraki gün biraz rötarlı da olsa Ankara’ya vardık.
Dünya genelindeki bilim insanları ilk kez 130 milyon ışık yılı uzaklığındaki iki nötron yıldızının çarpışmasını fotoğraflamayı başardı. Bu olay “GW170817” olarak adlandırıldı.
Ve bunun tamamı, olayı saptayan ve gözlemevlerini nereyi incelemeleri gerektiği ile ilgili uyaran kütle çekimsel dalga astronomisi sayesinde oldu. Böylelikle bunu, ilk eş zamanlı optiksel ve kütleçekimsel dalga gözlemi olarak ilkler listesine ekleyebiliriz.
Parti verebilir miyiz? Hadi verelim!
Şakayı bir yana bırakırsak, bu gerçekten muhteşem bir şey. Daha önce hiçbir zaman kütleçekimsel dalgaların nereden geldiğini ya da bu dalgaların sebep olduğu olayları saptayamamıştık. Ve bu, tüm zamanların yalnızca beşinci kütleçekimsel buluşu.
Önceki dört buluş, bir büyük kara delik oluşturmak için bir araya gelen ikili kara delik sistemlerindeki çarpışmadan (ya da birleşmeden) elde edilmişti. Onları göremememizin iki ana sebebi vardı.
Bunlardan ilki, bu yılın başlarına kadar sadece iki saptayıcımızın olmasıydı –LIGO’nun (Lazer İnterferometre Kütle Çekim Dalga Gözlemevi) Louisiana, Livingston’daki ve Washington, Hanford’daki interferometreleri (çatışma ölçeği). Bu da ilk üç olayın gökyüzünün sadece çok geniş bir kısmında saptanabileceği anlamına geliyordu.
Üçüncü bir saptayıcının eklenmesi, ki bu da İtalya’daki Virgo’nun interferometresi, daha birkaç hafta önceki dördüncü kütleçekimsel dalga olayında lokasyon kesinliğini 10 civarında bir faktör olarak geliştirdi.
Diğer sebep ise kara deliklerin doğaları gereği görünmez olmalarıydı. Kara delikler bütün ışığı emdiklerinden onların varlığını yalnızca etraflarındaki uzaydaki değişimlere bakarak anlayabiliriz. Öte yandan, nötron yıldızları oldukça görülebilirdir haliyle aralarındaki çarpışma heyecanla beklenen bir şeydi.
Bu bir dizi yeni gözlemi yapmak için 70 civarında yeryüzü ve uzaya bağlı gözlemevi, merceksel galaksi NGC 4993’ün hemen bitişiğindeki Su yılanı takımyıldızını araştıran Virgo ve LIGO’ya katıldı.
İlk saptayıcı 17 Ağustos’ta EDT saat dilimine göre 08.41’de ötmeye başladı.
Sonrasında, yaklaşık 1.7 saniye sonra iki uzaya dayalı gözlemevi, NASA’nın Fermi Gama Işını Uzay Teleskobu ve ESA’nın Uluslararası Gama Işını Astrofizik Laboratuvarı, gökyüzünün aynı alanından yoğun bir gama ışını patlaması –evrendeki en parlak ve en enerjik olayları- algıladı.
“Cırıltı” da farklıydı tabi. Bunlar ses verisine dönüştürülen şeylerdir ve kara delik çarpışmaları için sadece saniyenin kesirleri kadar sürerler. GW170817’de cırıltı 100 saniye civarında sürdü.
Bu bir tesadüf değildi ve dünya genelindeki astronomlar teleskoplarını Suyılanı’ya yöneltmek için çılgınca atıldılar.
LIGO’nun sözcüsü David Shoemaker ,“Bize hemen öyle göründü ki, kaynağın görmeyi umduğumuz bir diğer kaynak olan nötron yıldızları olması olasıydı ve Dünya’ya göreceğimizin sinyallerini veriyordu.” dedi.
Nötron yıldızları, bir süper kütleli yıldızın yaşam döngüsünün sonunda meydana gelebilecek şeylerden biridir.
Çekirdek, protonları ve elektronları nötron ve nötrinolara sıkıştırarak çöker. Nötrinolar kaçar fakat nötronlar sadece 10-20 kilometre arasında (6-12 mil) bir çapta çekirdeğin içine inanılmaz derecede yoğun olarak doluşurlar.
Eğer çekirdeğin ağırlığı üç yıldız kütlesinden daha azsa, bu yoğunluğun baskısı nötron yıldızını destekler. Eğer çekirdek daha büyükse, çekirdek bir karadeliğin içine çöker.
GW170817’deki iki nötron yıldızı yaklaşık 1.1 ve 1.6 yıldız kütlesi arasındaydı ve hızlandıkça etraflarındaki uzay zamanını çarpıtarak ve evrene dalgacıklar göndererek yaklaşık 300 kilometrelik mesafeden daralan sarmal bir şekilde birbirlerini yörüngelerine alıyorlardı.
Onları gözlemlediğimiz uzaklıktan bakıldığında son çarpışma aşırı derecede parlaktı, gama ışınlarından yoğun bir “ateş topu” yayıyordu. Bunu aşağıdaki videoda görebilirsiniz. Büyük parlak nokta, NGC 4993 galaksisinin merkezinde. Hemen yukarısına ve soluna bakın, GW170817’yi görebilirsiniz.
Kesinlikle inanılmaz değil mi? Bu iki nötron yıldızının arasındaki çarpışma Güneş’ten çok da büyük değil ve 130 milyon ışık yılı uzaklıktaki bu olayı bizzat kendi gözlerinizle görüyorsunuz.
Fakat durum gittikçe iyi bir hal alıyor. Gama ışını patlamasından bahsettiğimizi hatırlıyor musunuz?
NASA’nın Goddard Uzay Uçuş Merkezi’nin Fermi Projesi’nin bilim kadını Julie McEnery, “On yıllardır kısa gama ışını patlamalarının gücünü nötron yıldızı birleşmelerinden aldığından şüpheleniyorduk.” dedi.
“Şimdi bu olay için LIGO ve Virgo’dan gelen inanılmaz veri ile cevaba sahibiz. Kütleçekimsel dalgalar bize birleşen objelerin nötron yıldızlarıyla tutarlı kütleleri olduğunu ve gama ışınlarının ışıltısı da bize objelerin büyük olasılıkla karadelikler olmadığını çünkü bir karadelik çarpışmasının ışık yaymasının beklenmediğini söylüyor.”
Ve bütün bunlar bir kez daha Einstein’ın haklı olduğunu kanıtlıyor.
”Bu… kütleçekimsel dalgaların ışık hızıyla neredeyse aynı hızda -10.000 trilyonda birlik bir farklılıkta- olduğunu gösterip, Einstein’ın 1915’teki öngörüsünü destekliyor.” diyor Melbourne Üniversitesi’nden Andrew Melatos.
Önümüzdeki haftalar ve aylarda da gözlemevleri kilonova hakkında daha fazla şey keşfetmek için çarpışmanın gözlemlerini yapmaya devam edecek. Ki bu da çarpışmadan geriye kalan maddeler hala parlıyorken ve uzaya püskürmeye devam ediyorken gerçekleşecek.
Dünya genelindeki gözlemevleri ve enstitüler aynı zamanda bu olay hakkında raporlar yayınlıyor olacaklar. Bu olayın daha keşfedilmeyi bekleyen birçok yönü var.
Shoemaker, “Nötron yıldızları ve ürettikleri salınımlar hakkındaki derin çalışmaların detaylandırılmış modellerinden alınan bilgiye göre, genel izafiyet gibi daha temel fizik konuları için bu olay son derece zengin bir kaynak.” dedi.
“Bu bizlere bir şeyler bahşetmeye devam edecek olan bir hediye.”
Daha fazlasını aşağıdaki Veritasium videosunda bulabilirsiniz:
Yeni yıldız çocuklarıyla tanışmak üzere 12 Ekim Perşembe günü 18:00’de Fizik Bölümü 3. katta bulunan Cavid Erginsoy Seminer Salonu’nda buluşuyoruz. Toplantı sonrası havanın uygun olması durumunda, Fizik Çimleri’nde gökyüzü gözlemi yapılacaktır.
7 Ağustos’ta bizleri parçalı bir Ay tutulması bekliyor. Bu tutulma Dünya’nın birçok yerinden gözlemlenebilecek. Buralar Güney ve Doğu Asya, Avrupa, Afrika ve Avustralya kıtaları.
Tutulmanın gözlenebileceği bölgeler koyu renkle gösterilmiş. Kaynak: thetimenow.com
Tutulma Türkiye saatiyle saat 18.50’de başlıyor. Bu saatte dolunay henüz doğmamış olacağı için tutulma başlangıcı ülkemizden gözlemlenemeyecek. Güneş’in batmasıyla doğacak dolunayla gözlenmeye başlanacak tutulmanın ortası, yani maksimuma ulaşacağı saat ise 21.20. Tutulma saat 23.50’de son bulacak. 5 saat 1 dakika sürecek olan tutulma, %25’lik bir büyüklüğe ulaşacak, yani Ay’ın %25’i Dünya’nın tam gölgesine girecek.
Peki Parçalı Ay Tutulması Nasıl Oluşur?
Dünya, Güneş ve Ay uzayda gezinmektedirler. Kimi zaman bu üç gök cismi tek bir çizgideymiş gibi sıralanır. Bu zamanlarda da tutulmalar gerçekleşir. Ay’ın Dünya’nın gölgesine saklandığı tutulmalara Ay tutulması diyoruz. Bugünkü gibi tutulmalarda ise Ay, Dünya’nın gölgesine tamamen saklanmaz. Bu nedenle bu gök olayına kısmi veya parçalı Ay tutulması denmektedir. Ay yüzeyinin küçük bir kısmı, tamamen Dünya’nın gölgesinde kalarak “umbra” (tam gölge) ile kaplanırken, kalan kısmı “penumbra” (yarı gölge), yani Dünya’nın gölgesinin dış kısmı ile kaplanır.
Güzel bir şansa ihtiyacınız olduğu zaman baktığınız “kayan yıldızlar” aslında sadece meteor, ama ilk defa NASA’daki uzmanlar gerçekten yıldız olan bir kayan yıldızı belirlediler. Bu yıldızın ismi Mira ve aynı bizim kayan yıldız diye adlandırdığımız meteorlar gibi uzun, parlayan bir kuyruğa sahip. NASA’ya göre bu yıldız arkasına daha sonradan yeni yıldızların ve gezegenlerin (belki de yaşam barındıracak gezegenler) oluşmasını sağlayacak materyaller dökerek ilerliyor.
NASA’nın teleskopları mor ötesi ışık kullanarak ilk kez Mira’nın kendine has kuyruğunu yakaladılar. Bu kuyruk bizim kayan yıldız diye adlandırdığımız gök cisimlerinin kuyruklarının aksine sadece anlık bir parlama yapıp sönmüyor. 13 ışık yılı uzunluğundaki kuyruk, Mira saate 468,000 kilometre hızla Samanyolu’nda giderken arkasında bıraktığı hidrojen gazı bulutları ve tozdan oluşuyor. NASA’nın söylediğine göre astronomlar bu fotoğrafı ilk gördüklerinde adeta şok oldular çünkü Mira üzerinde 400 yıldan uzun bir süredir çalışılmasına rağmen böyle bir şey daha önce hiç belgelenmemişti.
NASA, bu yıldızın aslında son 30,000 yıldır 3,000 Dünya ya da 6 Jüpiter büyüklüğünde gezegenin içini doldurabilecek kadar materyal saçtığını belirtti ama Mira’dan artakalanlarla ilgili bir endişe duymamıza gerek yok çünkü Mira Dünya’mıza 350 ışık yılı uzaklıkta ve Balina Takımyıldızı’nın bir parçası.
Yani eğer Mira bizim bildiğimiz kayan yıldızlardan değilse, diğerleri ne oluyor? Onlar meteor yani, yeterince şanssızsak atmosferimize çarpacak uzaydaki kaya yığınları; bu bir kere oldu mu yeryüzüne doğru inanılmaz bir hızla gelmeye başlarlar ve yüzlerce kilometre öteden bile görülebilecek şekilde etraflarındaki havanın parlamasını sağlarlar. Yani gerçek kayan yıldızlar bize yüzlerce ışık yılı uzaklıktayken bizim yıldız kayması diye isimlendirdiğimiz olaylar atmosferimizin içinde oluyor.
Mira öyle sıradan bir yıldız değil; o bir kırmızı dev. Bir yıldızın kırmızı deve dönüşmesi onun ömrünün sonlarına yaklaştığının bir işaretidir. Bizim Güneşimiz de 5 milyar yıl sonra bir kırmızı deve dönüşecek ama bir yıldızın yaşam süresini ele aldığımız zaman ömrünün son günleri demek, diyelim ki 11 milyar yıllık ömrünün sonları demektir yani yaşamak için gayet uzun bir süre. NASA Mira’dan çok da uzak olmayan başka bir gök cismi daha belirledi. Bu gök cisminin ismi Mira B ve bunun bir beyaz cüce olduğu düşünülüyor. Bir kırmızı dev, çekirdeğine kadar bütün yakıtını bitirdiğinde beyaz cüceye dönüşür ve beyaz cüceler oldukça yoğundurlar. National Geographic bir çay kaşığı kadar beyaz cücenin maddesinin dünya üzerinde bir fil kadar yani 5.5 ton ağırlığında olacağını belirtti. NASA ise Mira ve Mira B’nin birbirlerinin etrafında döndüklerini ve bir turlarını 500 yılda tamamladıklarını belirtti.
Mira Dünya’ya 350 ışık yılı uzaklıkta Cetus Takımyıldızı’nda -diğer adı Balina Takımyıldızı- yer alıyor. Şans eseri Mira ve onun balina kuyruğu Balina Takımyıldızı’nın kuyruğunda bulunabilir. Resim: NASA/JPL-Caltech
Ulusal Uzay Günü, mayıs ayının ilk cuma günü her yıl gerçekleşmektedir. Bugün, uzayın keşfinden kullanılmasına kadar elde edilen olağanüstü başarılar, avantajlar ve fırsatlara adanmış. Ulusal Uzay Günü’nün amacı, gençlerin matematik, fen, teknoloji ve mühendislik eğitimini ve bilimde kariyer yapmaya teşvik etmek için, özellikle uzay ile ilgili işlerde kariyer yapmak için teşvik etmektir.
Öğretmenler, öğrenciler, uzayla ilgili kuruluşlar, gruplar ve ajanslar her yıl Ulusal Uzay Günü kapsamında kutlamalar yapıyor, gösteri ve eğitim programları düzenliyor.
Ulusal Uzay Günü son yıllarda hızla büyüdü ve artık ‘Uluslararası Uzay Günü’ olarak dünya çapında kutlanmaktadır.
Aslında bu günün tarihi çok eskiye dayanmamaktadır. Ulusal Uzay Günü 1997’de Lockheed Martin Corporation tarafından bir günlük bir etkinlik olarak yaratılmıştır. 2001’de, aşırı popülerliği nedeniyle, eski astronot ve Senatör John Glenn, Uzay Günü’nü Uluslararası Uzay Günü olarak genişletti.
Siz de #NationalSpaceDay etiketi ile sosyal medya üzerinden favori uzay fotoğraflarınızı paylaşmayı unutmayın. Astronomiyle kalın…
Ali bin Rıdvan 11. yüzyılda Mısır’da yaşamış olan, döneminin en ünlü astronomlarından biridir. Fizik, astronomi, astroloji ve tıp alanında çalışmış olan biliminsanı, SN 1006’ya dair tuttuğu kayıtlarla ünlüdür. 1006 yılında patladığında, Mısır ve Çin başta olmak üzere Dünya’nın bir çok bölgesinde kayıt edilmiş olan süpernova 7.200 ışık yılı uzaklıkta bulunmasına rağmen o kadar çok parlamıştır ki, 30 Nisan ve 1 Mayıs 1006 tarihlerinde gece ve gündüz gökyüzünde oldukça parlak bir gök cismi olarak gözlemlenmiştir.
SN 1006 süpernovası
Kurt (Lupus) takımyıldızı doğrultusunda gözlemlenmiş olan süpernova yaklaşık -7.5 kadir görünür parlaklığa sahip olmuştur, yani insanlık tarihinde kaydedilmiş olan en parlak gök olayıdır. Bu noktada, astronomide parlaklığın birimi olarak kullanılan kadirin negatif(-) değerlere gittikçe parlaklığın artmasıyla değiştiğini bilmemiz gerekiyor. Dünya’dan Ay’ın ortalama -13 kadir ve Güneş’in -27 kadir olarak göründüğünü düşünecek olursak; o ana kadar oldukça sönük ve sıradan olan bir yıldızın, ani bir patlamayla böyle bir parlaklığa erişmesi oldukça alışılmadık bir durum. Ali bin Rıdvan Batlamyus‘un Tetrabiblos adlı eserine yaptığı tefsirde güney tarafında olduğunu not ettiği bu patlamanın, boyutu Venüs’ünkinin 2.5-3 katı kadar olan dairesel bir cisim olduğunu ve parlaklığının Ay’ın çeyreği kadar (ya da biraz daha fazla) olduğunu ve bu yüzden gündüz bile oldukça net bir şekilde görülebildiğini belirtiyor.
SN 1006’ya dair yaptığı gözlemlerin haricinde, zodyak kuşağındaki 12 burçtan geçen kuyruklu yıldızların astrolojik yorumlarıyla ilgili bir çalışması da bulunmaktadır. Yurt dışında Haly Abedrudian olarak da tanınan biliminsanının, tümevarım alanında yaptığı çalışmalarla bu konuya katkı sağladığı düşünülmektedir. Amerikalı ünlü bilim tarihçisi Alistair Cameron Crombie’ye göre, indüksiyon fikrinin geliştirilmesinde de payı vardır.
Bunlara ek olarak, Mısır’ın çok sağlıksız bir yer olduğunu ve havanın (diğer çevresel unsurlarla beraber) bir toplumun sağlığı için en önemli faktör olduğunu savunan düşünen İbn-i Cemaz’a hitaben, Mısır’daki bedensel engellerin önlenmesi ve tedavisi üzerine bir tez yazmıştır.
Paul Adrien Maurice Dirac geçmiş yüzyılın en göze çarpan fizikçi ve matematikçilerinden biridir. Paul Dirac antimaddenin varlığını öngören meşhur Dirac denklemi sayesinde 1933 yılında Nobel Ödülü’nü Erwin Schrödinger ile paylaşmıştır. Paul Dirac, Bristol Üniversitesi’nde elektrik mühendisliğinden 1921 yılında mezun olduktan sonra, yine Bristol Üniversitesi’nde 2 sene matematik alanında çalıştı. Matematik çalışmasının ardından Cambridge’te St. John’s Koleji’nde araştırmacı olarak çalışmaya başladı ve 1926 yılında doktorasını tamamladı. Ertesi sene orada akademik üye olarak çalışmaya başladı ve 1932’de Cambridge’te matematik profesörü ünvanını aldı. Paul Dirac’ı Nobel Ödülü’ne götüren asıl çalışması Albert Einstein’ın 1915’te yayımladığı genel görelilik teorisiyle, elektronların enerji seviyelerini açıklayan kuantum teorilerini 1928’de birleştirerek rölativistik (ışık hızına yakın) bir hızda hareket eden elektronların davranışını açıklaması olmuştur.
Denklem ne kadar güzel olsa da, sanki denklemin bir sorunu varmış gibi görünüyordu, çünkü denklemin iki sonucu vardı. Bir sonuç negatif yüklü bir elektron içindi, diğer sonuçsa çok ilginç bir şekilde pozitif yüklü bir “elektron” içindi. Denklem negatif enerjili elektronların da olabileceğini gösterse de, klasik fizik bir parçacığın enerjisinin pozitif olmasını zorunlu kılıyordu. Dirac denklemi, var olan her parçacığa karşılık gelen ve her özelliğinin aynı, fakat sadece zıt yükünde bir parçacık daha olması gerektiğini gösteriyordu. Bu maddeler antimadde olarak tanımlandı. Yani her bir elektron için, her yönüyle aynı ama pozitif yüklü bir “antielektron” olmalıydı.
Carl Anderson
1932 yılında Kaliforniya Teknoloji Enstitüsü’nde genç bir profesör olan Carl Anderson, bir bulut odasında kozmik parçacık yağmurlarını çalışırken “pozitif yüklü ve bir elektronla aynı kütleye sahip bir şey” tarafından bırakılmış bazı izler gördü. Neredeyse bir yıllık gözlemlerden sonra bu izlerin antielektronlara ait olduğuna karar verdi. Her biri bir elektronla beraber, bulut odasındaki kozmik ışınların çarpışmalarından oluşmuştu. Carl Anderson antielektrona “pozitron” adını verdi. Bu keşif kısa bir süre sonra, 1934 yılında Guiseppe Occhialini ve Patrick Blockett tarafından da onaylandı. Anderson, pozitronun keşfi sayesinde 1936 yılında Victor Hass ile Nobel Ödülü’nü paylaştı. Fizikçilerin aradığı bir sonraki parçacık daha ağır bir parçacık olan antiprotondu ve bir 22 yıl boyunca daha keşfedilemeyecekti.
Ernest Lawrence
1954 yılında Ernest Lawrence, Bevatron adında bir proton hızlandırıcısının inşasını idare etti. Cihazın adı o zamanlar kullanılan “milyar elektronvolt”un simgesi “BeV”den geliyordu. Bevatron, protonları 6,2 BeV’de (şu anki simgesiyle GeV), yani antiproton üretmek için öngörülen enerjide çarpıştırmak için tasarlanmıştı. “1 Nisan 1954’te manyetik alanda 6 BeV’e denk gelen zayıf bir atım elde edildi. Şiddeti, içerideki nükleer emisyonda oluşan izlerin sayılmasıyla ölçülebildi. Şiddet, akım başına 104 ile 106 protondu,” diyor Edward Lofgren. Bevatron artık çalışıyordu!
1955 yılında Bevatron’daki bir grup tarafından yazılan “Antiprotonların Gözlemi” isimli bir yazıda yeni bir parçacığın keşfinden bahsediliyordu: Her yönüyle protonla birebir aynı, fakat yükü negatifti. Hemen bir sene sonra, 1956’da Bevatron’da çalışan ikinci bir takım da antinötronun keşfini açıklayan bir makale yayınladı.
1995 yılında, Walter Oelert tarafından yönetilen bir takim CERN’de antihidrojen atomlarını yaratmayı başardı. Antiprotonlar ve ksenon atomlarının çarpıştırılmasıyla 3 haftalık bir süre içerinde 9 tane antihidrojen atomu üretildi. Her biri yaklaşık saniyenin kırk milyarda biri kadar varlığını sürdürdü. Neredeyse ışık hızında hareket eden bu atomlar 10 metrelik bir yol katettikten sonra normal madde ile çarpışarak yok oldu. Bu yok olma iyi bir şeydi çünkü antiatomların oluştuğunu gösteriyordu.
Antimadde ile ilgili en kafa karıştırıcı sorulardan biri ise evrende neden maddenin antimaddeden daha fazla olduğu. CERN’de yapılan deneylerde, bir tılsımlı kuark ve bir yukarı veya aşağı antikuarktan oluşan D-mezonların, normal bir parçacık ile bir antiparçacık arasında sürekli salınım yaptığı gözlemlendi. Bu olay daha önce K-mezonlarda ve B-mezonlarda da gözlenmişti. Ancak bazı durumlarda bu salınım olayı, mezonun antimezona dönüşmesi ve bunun tersi farklı oranlarda oluyordu. 1960’larda yapılan deneyler K-mezonun antiparçacıktan normal parçacığa geçmesinin daha olası olduğunu ve 2010 yılında Fermilab’de yapılan bazı gözlemler ise bunun B-mezonlar için de doğru olabileceğini gösterdi. Bunlar yük-parite ihlali (Fizik yasalarının madde ve antimadde için simetrik olması prensibinin istisnası) olarak bilinen bir olayın örnekleri. Bu ihlal evrenimizin neden maddeden oluştuğunu açıklamakta belki bize birazcık yardımcı olabilir. Fizik son yüzyılda ne kadar hızlı bir gelişim göstermiş olsa da hala bilmediğimiz birçok şey ve antimadde konusunda aydınlatılmayı bekleyen sorularımız var. Bunların en azından bir kısmını açıklayabilmek ise geleceğin fizikçilerine düşüyor.
Gökyüzüne baktıktan sonra, zihninize kazıdığınız görüntüleri istediğiniz gibi kaydedemiyor musunuz? İşte bu görüntüleri hayal ettiğiniz şekilde kaydedebilmek için bazı ekipmanlara ve birtakım teknik bilgilere ihtiyacınız var. Bu ekipmanları ve teknik bilgileri sizlere öğretmek için 6 Nisan 2017 günü saat 18.00’da Cavid Erginsoy Seminer Salonu’nda yapacağımız “Astrofotoğrafçılık Atölyesi” ne tüm gökyüzü severleri bekliyoruz. Etkinliğimiz kısaca fotoğrafçılığa giriş ile başlayacaktır; daha sonra ise astrofotoğrafçılık tekniği ve uygulama yöntemleri ile devam edecektir. Eğer hava koşulları elverişli olursa Fizik Bölümü’nün çatısında astrofotoğraf çekimleri yapmayı planlıyoruz. Gökyüzünüz açık olsun.
Uluslararası bir astronomi ekibi, bilinen en yüksek kütleli ve en saf bileşimli kahverengi cüceyi (nükleer füzyon için çok küçük kütleli bir yıldız) keşfettiklerini açıkladı. SDSS J0104+1535 adıyla bilinen bu gök cismi, galaksimizin en dış bölgesine uzanan halelerden birinin içinde yer almaktadır. Bilim insanları bu keşfi “Monthly Notices of the Royal Astronomical Society” isimli dergide yayımladı.
Kahverengi cüceler, yakıtını kullanan yıldızlar ile onların etrafında dönen gezegenlerin ortasında bir boyuttadır. Hidrojeni helyuma dönüştüren nükleer füzyon için çok küçük boyuttadırlar ancak gezegenlerin bir çoğundan da yüksek bir kütleye sahiptirler. Dünya gezegeninden 750 ışık yılı uzaklıkta, Balık Takımyıldızı’nda bulunan SDSS J0104+1535, Güneş’ten 250 kat daha saf bir gaz yapısına sahiptir ve bünyesinde 99.99% hidrojen ve helyum gazı barındırır. Tahmini olarak 10 milyar yıl önce oluştuğu düşünülmektedir. Ayrıca ölçümler göstermektedir ki bu kahverengi cüce yaklaşık olarak Jüpiter’in 90 katı bir kütleye sahiptir. Bu da SDSS J0104+1535‘i bilinen en yüksek kütleli kahverengi cüce yapar. Daha önceden kahverengi cücelerin ilkel gazlardan oluştuğu bilinmiyordu ve bu keşif bize galaksimizin antik geçmişinden gelen bir sürü ”saf” kahverengi cüce olabileceğini gösterdi.
Bu ekibin başında olan, Kanarya Adaları’ndaki Institute of Astrophysics’den Dr.ZengHua Zhang:
”Bu kadar saf içeriğe sahip bir kahverengi cüce görmeyi beklemiyorduk. Bu keşif bizlere daha keşfedilmemiş bir çok şeyin olabileceğini gösteriyor. Dışarıda buna benzer keşfedilmeyi bekleyen gök cisimleri yoksa, bu beni çok şaşırtacaktır.”
SDSS J0104+1535, optik ve yakın-kızılötesi spektrumu yardımıyla L tipi bir ultra-kahverengi cüce olarak sınıflandırıldı. Bu ölçüm Avrupa Güney Gözlemevi’nin Çok Büyük Teleskop’u (European Southern Observatory’s Very Large Telescope) yardımıyla yapıldı. Bu sınıflandırma, yakın zamanda Dr. ZengHua Zhang’in yayımlanan şeması üzerine kuruludur.
Orjinal Makale Kaynağı: Z. H. Zhang et al. Primeval very low-mass stars and brown dwarfs – II. The most metal-poor substellar object, Monthly Notices of the Royal Astronomical Society (2017). DOI: 10.1093/mnras/stx350