gokyuzu.org

Merkür: Güneş Sistemimizin Kanatlı Habercisi

Merkür, Güneş’e en yakın gezegendir ve Güneş etrafında diğer gezegenlerden daha hızlı dönmesi sebebiyle adını Romalıların haberci tanrısı Merkür’den ( kendisinin hızlı hareket eden kanatlı sandaletleri vardır) almıştır.

Merkür’ün fiziksel özellikleri ve yapısı

Merkür, Güneş’e o kadar yakındır ki uzun gündüzlerde sıcaklık kurşunu eritecek kadar yükselip 430 °C’yi bulabilir. Ancak atmosfer tabakası ince olduğundan ısıyı hapsedemez ve geceleri sıcaklık -180 °C’ye düşer. Güneş sistemindeki başka hiçbir gezegende bu kadar sıcaklık farkı görülmez. Ayrıca çarpmaları durduracak bir atmosfer tabakasına sahip olmadığı için gezegenin yüzeyi çukurlarla kaplıdır.

Merkür’ün, Dünya’dakine benzer (ancak %1’i şiddetinde) bir manyetik alana sahip olduğunu belirlenmiştir. Bu bilgiden de çekirdeğinin genel yapısının Dünya’nınkine çok benzer olması gerektiği söylenebilir. Merkür’ün manyetik alanı, aynen Dünya’nın manyetik alanında olduğu gibi (ancak daha küçük ölçekte) gezegeni saran bir yapıya sahiptir ve Güneş rüzgarı ile etkileşir. Bu etkileşme sonucu gezegenin çevresinde manyetosfer tabakası oluşur ve bu tabaka Güneş rüzgarı parçacıklarının gezegene yaklaşmasını önler. Bu nedenle Dünya’nın çevresinde görülen Van Allen ışınım kuşaklarına benzer yapılar Merkür çevresinde görülmez.

Merkür bazı uydulardan küçük olmakla birlikte, Dünya hariç tüm gezegenlerden daha yoğundur. Merkür gibi küçük bir gezegenin bu kadar yoğun olmasının sebebi gerçekten büyük bir demir çekirdeğe sahip olmasıdır. Ayrıca bu küçük gezegen, soğuyan bir demir çekirdeği üzerinde bulunan tek bir kıtasal plakadan oluşur ve çekirdek soğudukça katılaşır. Bu da gezegenin hacmini azaltır ve küçülmesine neden olur. Merkür yeterince küçük değilmiş gibi bugün de küçülmeye devam ediyor. Bu yüzden de yüzeyi buruştu, bazıları yüzlerce mil uzunluğunda ve bir mile varan derinlikte yarık ve uçurumlar meydana geldi. Örnek olarak Merkür’ün “Great Valley”si Büyük Kanyon’dan daha büyük ve Afrika’nın doğusundaki Büyük Rift Vadisi’nden daha derindir.

Merkür; kendi çevresindeki bir turu yaklaşık 59 Dünya gününde, Güneş etrafındaki yörüngesini ise 88 günde tamamlar. Fakat Merkür’de gün doğumu ile gün batımı arasındaki süre olması gerekenden farklıdır. Çünkü Merkür, oluşumundan bu yana Güneş’in etkisi altında küresel yapıdan sapmış ve bir dönel elipsoid şeklini almıştır. Bu yüzden de Güneş kendine yakın olan kenarı daha büyük bir kuvvet ile çeker. Ancak yörüngesinin elips olması nedeniyle Merkür’ün uzun ekseni sadece enberi noktası (Güneş’e en yakın noktası) civarında tam olarak Güneş’e dönüktür. Güneş’in kendine yakın olan kenara uyguladığı çekim kuvveti artan uzaklıkla hızla zayıflar. Dolayısıyla enöte noktasına (Güneş’e en uzak noktası) yaklaştıkça gezegenin ekseni etrafında dönmesi daha baskın çıkar ve uzun eksen Güneş’ten sapar. Daha sonra uzun eksenin Güneş’e bakan noktasının ters tarafındaki nokta Güneş’e yaklaşmaya başlar. Azalan uzaklıkla Güneş’in bu nokta üzerindeki çekim etkisi artacağından uzun eksen tekrar Güneş’e doğru yönlenmeye zorlanır ve sonuçta enberi noktasına ulaştığında uzun eksen yine tam olarak Güneş’i göstermektedir. Ancak bir önceki enberi konumunda Güneş’e bakan yüzün tam tersi bu sefer Güneş’e bakmaktadır. Bu yüzden Merkür’de gün doğumu ile gün batımı arasındaki süre yaklaşık 88 Dünya günü ve iki gün doğumu arasındaki süre ise yaklaşık 176 Dünya günüdür.

Güneş sisteminde yer alan diğer gezegenlerin çekim etkisi sonucunda Merkür yörüngesinin yarı büyük ekseni, Güneş etrafında çok yavaş bir şekilde dönmektedir. Güneş merkezinden bakıldığında enberi noktasının yüzyılda 574″ doğuya doğru hareketi olarak kendini gösteren bu olaya Merkür’ün enberi noktasının presesyonu denir. Güneş sistemindeki diğer gezegenlerin yörüngelerinde bu etki daha küçük ölçekte gözlenmektedir. Bu etkinin varlığı uzun zamandan beri biliniyordu ve Newton çekim yasaları ile kolayca modellenebiliyordu. Ancak Merkür’de izlenen 574″ lik enberi presesyonunun tamamı başlangıçta Newton çekim yasaları ile açıklanamamıştır. Çünkü 43″ lik bir artma söz konusuydu. 19. yüzyılın ortalarında Le Verrier bu artık presesyonu açıklamak için Güneş’e Merkür’den daha yakın bir gezegenin var olabileceğini söylemiştir. Daha gözlenmeden “Vulkan” adı verilen bu gezegenin Güneş önünden geçişlerinin görülmesi gerekiyordu. Ancak bu geçiş hiçbir zaman gözlenemediği için böyle bir gezegenin olmadığı kesin olarak anlaşılmıştır. Daha sonraları Albert Einstein’ın ortaya attığı genel görelilik kuramı 43″ lik bu artık presesyonu başarıyla açıklamış ve de bu olayla birlikte kendini deneysel olarak test etme olanağı bulmuştur. Bu olayın sebebi, Merkür’ün Güneş’e çok yakın ve yörünge dış merkezliğinin göreli olarak büyük olmasıdır. Diğer gezegenler ve uydularda bu koşullar gerçekleşmediği için de artık presesyon olayı görülmemektedir.

Merkür’ün gözlenmesi ve araştırılması

Merkür gözlemlerine dair bilinen ilk kayıtlar eski Babil gök cismi kataloglarına (MUL.APİN tabletlerine) dayanır. Merkür çıplak gözle görülebilmesine rağmen bu o kadar da kolay görülmez. Çünkü Merkür Güneş’e çok yakın ve küçük olduğundan  şafak ve alacakaranlık (Güneş’in parlaklığının Merkür’e gölge düşürmediği zamanlar) dışında doğrudan gözlemlemek zordur. Ancak gözlemciler her yüzyılda 13 kez olan Merkür’ün Güneş’in önünden geçişini izleyebilirler. Bu nadir geçişler 8 Mayıs ve 10 Kasım arasında birkaç gün içinde gerçekleşir. 21. yüzyılda Merkür’ün ilk geçişleri 7 Mayıs 2003, 8 Kasım 2006 ve 9 Mayıs 2016’da gerçekleşti. Bir sonraki ise 11 Kasım 2019’da gerçekleşecek.

Galileo Galilei, Merkür’ü teleskopla gözlemleyen ilk bilim insanıdır. 1631 yılında Pierre Gassendi, Merkür’ün Güneş’in önünden geçişini izlemek için teleskop kullandı. 1639 yılında ise Giovanni Zupi, gezegenin Ay’ınkilere benzeyen evreleri olduğunu keşfetti.

Araştırmacılar Merkür’e bir uzay aracı göndermek istiyordu ama bu kolay bir iş değildi . Çünkü bir uzay aracının Merkür’e ulaşmak için hızlı gitmesi ancak gezegene vardığında ise yörüngeye oturmak için Güneş’in aracı daha da hızlandırmaya çalışan kütle çekiminin etkisine girmeden yavaşlaması gereklidir. Üstelik Güneş’in çekimi Merkür yakınlarında o kadar kuvvetlidir ki gezegenin etrafındaki yörüngeler kararsızken Güneş’e bu denli yakın olmak uzay aracının sabit sıcaklıkta kalmasını zorlaştırır. Yine de bu zorlu işi başardılar. 1974 yılında Merkür’ün araştırılması için ilk uzay aracı gönderildi. Bu aracın ismi Mariner 10’du ve bu araç gezegenin yüzeyinin yaklaşık yüzde 45’ini görüntülemiştir. Ayrıca Merkür’ün manyetik alanı oluğunu göstermiştir.

Merkür’ü ziyaret eden ikinci uzay aracı MESSENGER’dı (MErcury Surface, Space ENvironment, GEochemistry and Ranging). MESSENGER, 2004 yılında fırlatıldı ama Merkür’ün yörüngesine varması 6 yıldan fazla sürdü ve 2011 yılında Merkür’ün yörüngesine oturan ilk uzay aracı oldu. Gezegenin büyük kısmının renkli haritasını çıkardı ve atmosferle manyetosfer tabakalarını inceledi. 2015’te MESSENGER’ın yakıtı bittikten sonra görevi sonlandırıldı. Daha sonra kasıtlı olarak gezegenin yüzeyine düşmesi sağlandı.

Geçtiğimiz Ekim 2018’de ise Avrupa Uzay Ajansı (ESA) ile Japon Uzay Ajansı (Jaxa), Merkür’ün keşfine devam edilmesi için BepiColombo adlı aracı uzaya fırlattılar. Uzay aracının 2025’te Merkür’ün yörüngesine girmesi bekleniyor.

Kaynakça:

https://www.space.com/36-mercury-the-suns-closest-planetary-neighbor.html

https://acikders.ankara.edu.tr/pluginfile.php/23889/mod_resource/content/1/A207dersnotu_04.pdf

https://phys.org/news/2015-05-gravitational.html

https://solarsystem.nasa.gov/planets/mercury/exploration/?page=0&per_page=10&order=launch_date+desc%2Ctitle+asc&search=&tags=Mercury&category=129

https://www.bbc.com/turkce/haberler-dunya-45914201

Gezegenler:Etkileyici Görsellerle Güneş Sistemimiz-Maggie Aderin-Pocock

Yazan: Ahmet Arda Pektaş

Sarmal Gök Ada Nedir?

Sarmal gök adalar, yıldızlar ve çoğunlukla güzel şekillere sahip gazlar ile bu gazların meydana getirdiği sıcak genç yıldızlardan oluşan bükümlü şekle sahip yığınlardır. Şimdiye kadar keşfedilmiş olan gök adaların çoğu sarmaldır, diğer gök adalar ise çoğunluk olarak eliptik ve düzensiz şekilli olarak ikiye ayrılırlar.

3 Nisan 2013’de yayımlanan Hubble Uzay Teleskobu’nun çektiği bu Messier 74 fotoğrafı bize sarmal gök adaların evrenin en güzel ve fotojenik sakinlerinden biri olduklarını hatırlatıyor.

Samanyolu’na yakın olan gök adaların neredeyse %70’i sarmal. Yeni araştırmalar gösteriyor ki sarmal kollar kendi kendine yaşayabilen, ısrarcı ve gerçekten de şaşırtıcı bir biçimde uzun yaşayabiliyorlar.

Dünya’mızı ve Güneş’imizi de içine alan Samanyolu Gök Adası da sarmal gök ada örneğidir.

2010’da Hubble Uzay Teleskobu’nun yaptığı bir araştırmaya göre, bütün gök adaların neredeyse %72’sini sarmal gök adalar oluşturuyor.

Çoğu sarmal gök ada, merkezindeki şişkinlik etrafında disk şeklinde dönen yıldızlar bulundurur. Merkezindeki şişkinliği ise çok yaşlı, az ışık yayan yıldızlar oluşturuyor ve bir adet süper büyük kara deliğin de bulunduğu düşünülüyor. Sarmal gök adaların yaklaşık olarak üçte ikisi çubuklu, yani merkezinde çubuk biçiminde bir yıldız topluluğuna sahip olan ve sarmal kolları bu çubuğun uçlarından uzanan, gök adalardan oluşur; bizim Samanyolu Gök Adası da çubuklu sarmal gök adalara örnektir. Gök adaların sarmal kollarında çeşitli gazlar, tozlar ve parlayıp sönen genç yıldızlar bulunur.

Sarmal kolların nasıl şekillendiği hala bilim insanları arasında tartışma konusudur. Bir teoriye göre gök adanın kolları, diskin dış tarafında yol alan yoğunluk dalgalarından kaynaklanıyor. Gök adalar arasındaki karşılaşmaların o kadar yoğun dalgalara sebep olabileceğini ki daha küçük gök adaların daha büyük kütlelileri etkileyebileceğini söylüyor bu teori.

Sarmal gök adaların yaşlandıkça eliptik gök adalara dönüşeceği düşünülüyor ama eliptik gök adaların ne kadar sıklıkta bulunduğu bilinemeyen bir konu çünkü daha yaşlı, ışığı az yıldızlardan oluşan eliptik gök adaları saptaması çok daha zor.

Bilinen en geniş sarmal gök ada olan NGC 6872’nin kollarının en uzak noktaları arasında 522 bin ışık yılı uzaklık var ve bu Samanyolu Gök Adası’nın 5 katı büyüklükte olduğunu gösterir.

2017’de astronomlar 11 milyar yaşında olan A1689B11 isimli sarmal gök adayı keşfettiler. Bu keşfin bilim insanlarına gök adaların olağanüstü kaotik, karmakarışık disklerden nasıl olup da düzenli, ince disk biçimine eriştiklerini anlamak konusunda yardımcı olacağı düşünülüyor

Kaynak:

https://www.space.com/22382-spiral-galaxy.html

Çeviri: Mert Toros

Kara Delikler Evrenimizi Nasıl Şekillendirir?

Astrofizikçiler, gök adaların oluşumları ve evrimleri hakkında yeni bilgilere ulaştı.

 Astrofizikçiler; kara deliklerin, karanlık maddenin dağılımını nasıl etkilediğini, ağır metallerin nasıl oluştuğunu ve evrende dağıldığını, ve manyetik alanların nerede başladığını hesapladılar. Bunu mümkün kılmak için geliştirilen yeni evren simülasyonu, şu ana kadar yapılmış en geniş kapsamlı simülasyon olma özelliğini taşıyor.

Çökmüş karanlık madde yapılarının (turuncu ve beyaz renklerde) etrafındaki kozmik gazların (mavi renkte) içindeki şok dalgalarının yoğunluğunun gösterimi.

 Ses patlamasına benzer bir şekilde, şok dalgalarının içindeki gazlar, kozmik ipliklere ve gök adalara çarparken, oluşan sarsıntıyla ivmelenirler. Her gök adanın merkezinde bir süper kütleli kara delik bulunur. Yeni bir bilgisayar modeli ise, bu kütleçekim canavarlarının, evrenimizi ne denli büyük bir ölçüde etkilediğini gösteriyor. Araştırma ekibinde ise, Heidelberg Enstitüsü (Heidelberg Institute for Theoretical Studies / HITS), Max-Planck Astronomi ve Astrofizik Enstitüsü (Max-Planck-Institutes for Astronomy and for Astrophysics / MPIA, Heidelberg / MPA, Garching), Birleşik Devletler’in Massachusetts Teknoloji Enstitüsü (Massachusetts Institute of Technology / MIT), Harvard Üniversitesi (Harvard University) ve New York’taki Bilgisayımsal Astrofizik Merkezi’nden gelen bilim insanlarından oluşuyor. Yürüttükleri simülasyon “Illustris — The Next Generation” (IllustrisTNG), şu ana kadar yapılmış en geniş kapsamlı simülasyon olma özelliğini taşıyor. Basit fizik yasalarına dayanan bu simülasyoni evrenimizin Büyük Patlama’dan beri nasıl evrimleştiğini gösteriyor. Ondan önceki Illustris projesine ek olarak IllustrisTNG, bu evrimleşmede önemli rol oynayan fiziksel süreçleri içinde barındırıyor. IllustrisTNG’nin ilk bulguları “Monthly Notices of the Royal Astronomical Society” dergisinde 3 makale olarak paylaşıldı. Bu bulgular, kozmolojinin temel sorularını cevaplanmasında yardımcı olabilir.

Bilgisayardan Gerçekçi Bir Evren

 IllustrisTNG’nin tahminince, kozmik gaz ağlarının ve karanlık maddenin birleşme noktalarındaki gök adaların boyutu ve şekli, gerçek gök adalarınkiyle benzer. Tarihte ilk defa, hidrodinamiksel simülasyonlar uzaydaki gök adaların ayrıntılı kümelenme modellerini hesaplayabilir. En yeni araştırmalarla birlikte, gözlemsel verilerin karşılaştırılmasıyla, IllustrisTNG’nin yüksek derecedeki gerçekçiliği ortaya çıkıyor. Bununla beraber, simülasyonlar, özellikle karanlık madde kozmosunun ‘omurgası’ konusunda, kozmik ağların zamanla nasıl değiştiğini de tahmin ediyor. Heidelberg Üniversitesi’nden Prof. Volker Springel şöyle diyor:

 “Büyük ölçekte süper kütleli kara deliklerin maddenin dağılımındaki etkisinin bu denli kesinlikle tahmin edilmesi çok heyecan verici. Bu, ileride kozmolojik hesaplamaların doğruluğu için çok önemli.”

Gök adaların yaşamları boyunca yaşanan en önemli değişim

 Bir başka araştırmada Dr. Dylan Nelson (MPA), kara deliklerin gök adalara olan önemli etkileri ortaya koydu. İçinde bulunan genç yıldızların yaydığı ışıkla mavi renkte parıldayan gök adalarda meydana gelen ani bir değişim yıldız oluşumunu sonlandırır, bundan dolayı da gök adanın içi yaşlı, kırmızı yıldızlarla kaplanır, ve “kırmızı ve ölü” gök adalarla dolu bir mezarlığa katılır. Dr. Nelson, bu olayı şöyle açıklıyor:

 “Geniş eliptik gök adalardaki yıldız oluşumlarını durdurabilecek tek fiziksel varlık, merkezlerindeki süperkütleli kara deliklerdir. Bu kütleçekim tuzaklarının yarattığı boşalmaların hızı, ışık hızının yüzde onuna ulaşır; görece küçük kara delikten milyarlarca kat büyük yıldız sistemlerini etkileyebilir.”

Yıldızların parladığı yer: Gök adaların yapıları hakkında yeni bulgular

 IllustrisTNG, araştırmacıların gök adaların oluşumundaki düzeni daha iyi anlamasını sağlıyor. Kuramcılara göre, ilk önce oluşan küçük gök adalar, kütleçekim etkisiyle birleşerek daha büyük nesnelere dönüşüyor. Gök adaların çarpışması, bazı gök adaları parçalıyor ve içindeki yıldızları, merkezi yeni oluşmuş büyük gök adalar olmak üzere, geniş yörüngelere oturtuyor. Tahmin edilen bu solgun yıldız çemberleri düşük yüzey parlaklığından dolayı gözlemlenmeleri çok güç, fakat IllustrisTNG astronomların hangi verilere bakmaları gerektiğini tamamen gösterdi. IllustrisTNG hakkındaki çalışmaları yürüten Dr. Annalisa Pillepich (MPIA) bunu şu şekilde açıklıyor:

 “Artık tahminlerimiz düzenli bir biçimde gözlemciler tarafından denetleniyor. Bu da onu gök adalarınn oluşma düzeni hakkındaki kuramsal modelin önemli bir denetleyci haline getiriyor.

Özel kodlu astrofizik ve süper bilgisayar

 Araştırmacılar proje için AREPO adlı yüksek ölçüde paralel hareketli ağ kodunun daha güçlü bir versiyonunu geliştirdi ve bunu Almanya’nın Stuttgart şehrindeki Yüksek Performansla Hesaplama Merkezi’nde bulunan en hızlı  19. anaçatı bilgisayarlar olan Hanzel Hen makinesinde kullandılar. IllustrisTNG, kozmik yapıların oluşumunu incelemek için oluşturulan şu ana kadarki en büyük hidrodinamik simülasyon. İki ana simülasyonlardan birini başlatmak için, 2 ay içerisinde 24 binden fazla işlemci kuruldu; bu sayede evreni temsil eden, bir milyar ışık yılı genişliğinde bir bölgede milyonlarca gökada oluştu. Volker Springel bu durum hakkında şunu söylüyor:

“German Gauss Centre for Supercomputing’den elde ettiğimiz fazladan hesaplama zamanı sayesinde bu alandaki teknoloji harikası ürün artık bizim eliimizde. Yaptığımız bu simülasyon sayesinde elimizde 500 terabitten fazla yeni veri var. Bu kadar fazla verinin hepsini incelememiz bizi uzun süre meşgul etmesiyle beraber, farklı astrofiziksel olaylara değişik bakış açılarıyla bakmamıza vesile olacak.”

Bu haber Science Daily adlı sitedeki haberden çevrilmiştir.

Kaynak: https://www.sciencedaily.com/releases/2018/02/180201085822.htm

Çeviri: Tolga Can Menekşe

Vega: Geçmişin ve Geleceğin Kutup Yıldızı

Vega, Dünya’dan sadece 25 ışık yılı uzaklıkta bulunan parlak bir yıldızdır. Yazları kuzey yarım kürenin göğünde görülür ve ayrıca Lir(Çalgı) Takımyıldızı’nda yer alan Vega, Kartal Takımyıldızı’ndaki Altair ve Kuğu Takımyıldızı’ndaki Deneb ile birlikte yaz üçgeninin köşelerini oluşturan yıldızlardan biridir.

Vega sadece 450 milyon yaşındadır ve bu da onu, 4.6 milyar yaşındaki kendi yıldızımıza göre, genç bir yıldız yapar. Vega hakkında yapılan çalışmalar astronomlara, oluşumlarının erken evrelerinde olan yıldız sistemleri hakkında daha çok bilgi sağlıyor.

Dünya’nın 26.000 yılda bir yaşadığı yörüngesel salınım yüzünden kuzey anlayışımız değişiyor. Bu sebeple, Vega birkaç bin yıl önce bizim kutup yıldızımızdı ve yaklaşık 12.000 yıl sonra tekrardan kutup yıldızımız olacak.

Lir Takımyıldızı’nda Vega.

Vega’nın Yeri

Vega yaz ortalarında kuzey kutup bölgesinde, neredeyse tam tepede yer alır. Gün içinde sadece 7 saat ufkun altında kalan Vega ayrıca yılın her gecesi görülebilir.

Daha güneyde ise Vega ufkun altında daha fazla zaman geçirir; ama Alaska’da, Kuzey Kanada’da ve Avrupa’nın çoğunda hiç batmaz. Vega’nın tam yeri ise şöyledir:

  • Bahar Açısı: 18d 36s 56.3sn.
  • Yükselim: 38 derece 47 dakika 1 saniye.

İlk Gözlemler

Vega’nın mavi-beyaz ışığı çok parlak olduğu için izini antik zamanlara kadar sürmek mümkün; Çinlilerden Polinezyalılara ve Hintlilere kadar. Vega’nın adı ise Arapçadaki “waqi” kelimesinden gelmekte ve “alçalan” ya da “pike yapan” anlamını taşımaktadır.

“Bu isim, o zamanlardaki insanların Lir Takımyıldızı’nı lir kuşu olarak görmektense pike yapan bir akbaba olarak tasvir etmesinden kaynaklanıyor.” diyor Wisegeek sitesinden Michael Anissimov.

Gerek Vega’nın ismi gerekse diğer astronomik katkıları İslam’daki astronominin geleneksel önemini onurlandırıyor, demiş bir araştırmacı. Yıldızları gözlemek, onları takip etmek inananlara namaz vakitlerini ve festival zamanlarını belirlemelerine yardımcı olmalarının yanı sıra kutsal şehir Mekke’yi bulmalarını da sağlıyordu.

“Bu yüzden yüzlerce yıldızın ve takımyıldızının isimleri Arapçadan gelmekte: Altair, Deneb, Vega ve Rigel bunlara örnek olarak verilebilir.” diye yazmış 2013’te Natural dergisinde yayımladığı makalesinde, Şarika Amerikan Üniversitesinde astrofizikçi olan Nidhal Guessoum.

Modern zamanlarda Vega, Güneş haricinde fotoğraflanan ilk yıldızdır. Astronomlar dagerreyotipi tekniğiyle 38 santimetre refraktör kullanarak, 16-17 Temmuz 1850 yılında Harvard Üniversitesi Gözlemevi’nde (Harvard College Observatory) Vega’nın fotoğrafını çekmişlerdir.

Yıldız ayrıca 1872’de spektrografik analizi yapılacak ilk yıldız olarak seçilmiştir. Amatör astronom Henry Draper, Vega’nın ışığını kırarak yıldızı oluşturan elementleri ortaya çıkaran ilk kişi olmuştur.

Son Yıllarda Vega

Vega, Carl Sagan’ın 1985’te yayımladığı Mesaj(Contact) isimli kitabının 1997’de bir Hollywood filmine uyarlanması sonucu popüler kültürde yer edindi. Jodie Foster’ın baş rolü olduğu film, Dünya dışı akıllı yaşamı araştıran bir astronomun Vega’dan yayılan bir sinyali keşfetmesini anlatıyor.

2006 yılında yapılan teleskobik gözlemler ise şunu ortaya çıkardı: Vega o kadar hızlı dönüyor ki kutupları ekvatorundan birkaç bin derece daha sıcak. Kendi etrafındaki bir tam turu 12.5 saatte tamamlayan yıldız, kendi kritik dönme hızının (bir cismin parçalara ayrılmaya başlayacağı hız) %90’ı ile dönmekte.

2013’ün başlarında astronomlar Vega’yı saran bir asteroit kuşağı keşfettiklerini duyurdular, kuşağın içinde kayalık gezegenler olabileceğini de belirterek. Formalhaut’un etrafındakine benzer şekilde iki bölge olduğu düşünülüyor: Buzlu asteroitlerin bulunduğu dış bölge ve daha sıcak uzay taşlarının bulunduğu yıldıza yakın bölge.

Bilim insanları Vega gibi parlak yıldızları,  NASA’nın 2018’de başlayan TESS(Transiting Exoplanet Survey Satellite)görevi ile birlikte incelemekteler. TESS’in ana görevi Güneş sistemi dışındaki gezegenleri aramak olsa da TESS, yıldız çeşitliliğini arttıracak izler için de uğraşacak. TESS’in Vega ve benzeri yıldızları incelemesi bilim insanlarının, yıldız gelişiminin erken evreleri hakkında daha çok bilgi sahibi olmalarını sağlayacak.

Kaynak: https://www.space.com/21719-vega.html

Yazan: Mert Toros

Astronomi Nedir?

İnsanlar uzun zaman boyunca göklere baktı, etraflarındaki evrene bir anlam ve düzen katmak için araştırma yaptılar. Takımyıldızların -gökyüzü üzerine rastgele serpilmiş yıldızların kolayca ayırt edilebilmesi için düşünülen kümeler- hareketi izlenmesi en kolay olanı olsa da tutulmalar ve gezegenlerin hareketi gibi diğer göksel olaylar da tahmin edildi ve belirlendi.

Astronominin Tanımı

Astronomi güneş, ay, yıldızlar, gezegenler, kuyruklu yıldızlar, gazlar, galaksiler, tozlar ve diğer Dünya dışı cisim ve olgular üzerinde çalışan bilim dalıdır. K-4 öğrencileri için müfredatta NASA astronomiyi basit olarak “yıldız, gezegen ve uzay incelemesi” olarak tanımlar. Astronomi ve astroloji tarihsel olarak ilişkilendirilmiştir, ancak astroloji bir bilim değildir ve artık astronomi ile ilgisi olmadığı kabul edilmektedir.

Aşağıda, astronomi tarihi ve kozmoloji de dahil olmak üzere ilgili çalışma alanlarını tartışacağız.

NGC 7026, bir gezegenimsi bulutsu. Telif: ESA/Hubble & NASA

Tarihsel olarak astronomi, göksel cisimlerin gözlemine yoğunlaşmıştır. Astrofizik de buna yakın bir işle uğraşır. Özetle astrofizik, astronomi fiziğinin çalışmalarını içerir ve uzaydaki nesnelerin hareketi, davranışı ve özelliklerine odaklanır. Bununla birlikte modern astronomi, bu nesnelerin hareketlerinin ve özelliklerinin birçok unsurunu içerir ve bu iki terim günümüzde genellikle birbirleri yerine kullanılır.

Modern astronomlar iki farklı alana eğilim göstermişlerdir: Teorik ve Gözlemsel.

  • Gözlemsel Astronomlar direkt olarak yıldızların, gezegenlerin, galaksilerin vb. üzerinde çalışırlar.
  • Teorik Astronomlar sistemlerin nasıl evrimleşmiş olabileceğini analiz eder ve modellerler.

Diğer bilim alanlarının aksine, astronomlar bir sistemi tamamen doğumundan ölümüne kadar gözlemleyemezler; yıldızların, Dünya’nın ve galaksilerin ömrü milyarlarca yıl sürüyor. Bunun yerine astronomlar, cisimlerin nasıl oluştuklarını, geliştiklerini ve öldüklerini belirlemek için evrimlerinin çeşitli evrelerindeki anlık görüntülere güvenmek zorundalar.   Bu nedenle, teorik ve gözlemsel astronomi bir araya gelme eğilimindedir, çünkü teorik bilim insanları simülasyon oluşturmak için, toplanan bilgileri kullanırken; gözlemler, modellerin onaylanmasının ya da düzeltilmesinin belirlenmesinde görev alır.

Astronomi, bilim insanlarının belirli nesnelerde uzmanlaşmasına izin veren bir dizi alt alanlara ayrılmıştır.

Jüpiter’deki büyük kırmızı leke. Telif: Credit: Christopher Go via NASA

 Gezegensel astronomlar (gezegen bilimciler olarak da adlandırılırlar) gezegenlerin büyümesi, evrimi ve ölümüne odaklanırlar. Birçoğu güneş sistemi içindeki dünyaları incelerken, bazıları da diğer yıldızların etrafındaki gezegenlerin neye benzediğini tahmin etmek için giderek büyüyen kanıtları kullanırlar. University College London’a göre, gezegen bilimi “astronomi, atmosfer bilimi, jeoloji, uzay fiziği, biyoloji ve kimya gibi konuları içeren disiplinler arası bir alandır.”

 Yıldız astronomları gözlerini yıldızlara, karadeliklere, bulutsulara, beyaz cücelere ve yıldız ölümlerinden geriye kalan süpernovalara çevirirler. Kaliforniya Üniversitesi, Los Angeles, “Yıldız astronomisinin odak noktası evrende meydana gelen fiziksel ve kimyasal süreçler üzerinedir” diyor.

Güneş’in aktif bölgesi 10030, 15 Temmuz 2002. Telif: Royal Swedish Academy of Sciences

 Güneş astronomları zamanlarını tek bir yıldızın(güneşimizin) analizini yaparak geçirirler. NASA’ya göre “Güneşten gelen ışığın miktarı ve kalitesi, zaman ölçeklerinde milisaniyeden milyarlarca yıla kadar değişiyor.” Bu değişiklikleri anlamak, bilim insanlarının Dünya’nın nasıl etkilendiğini fark etmesine yardımcı olabilir. Güneş ayrıca diğer yıldızların nasıl çalıştığını anlamamıza yardımcı olur çünkü güneş, yüzeyiyle ilgili detayları ortaya çıkarabilecek kadar bize yakın olan tek yıldız.

 Galaktik astronomlar galaksimiz Samanyolu üzerinde çalışırken, ekstragalaktik (Samanyolu’nun dışında olan) astronomlar Samanyolu’nun dışında kalan yıldızların nasıl oluştuğunu, değiştiğini ve öldüğünü saptarlar. Wisconsin-Madison Üniversitesi “Dağılımları, yapısal içerikleri ve içindeki yıldızlarla gaz bulutlarının fiziksel yapıları, sürekli evrilen Gökadamızın tarihi hakkında iz sürmemizi sağlıyor” diyor.

 Kozmologlar evreni bütün olarak ele alırlar. Büyük patlamadaki doğumundan evrimine ve nihai olarak ölümüne kadar… Astronomi, her zaman olmasa da sıklıkla somut, gözlemlenebilir şeyler hakkındayken; kozmoloji ise genellikle evrenin geniş çaplı özelliklerini, sicim teorisi gibi ezoterik, görünmez ve bazen teorik şeyleri, karanlık madde, karanlık enerji ve çoklu evrenler kuramını içerir.

Astronomik gözlemciler, evrendeki nesneleri geniş mesafede incelemek için, elektromanyetik spektrumda farklı dalga boylarına (radyo dalgalarından görünür ışığa, X ışınlarına ve gama ışınlarına) güvenirler. İlk teleskoplar, çıplak gözle ne görülebilecekse, bunun üzerine basit optik çalışmalara odaklandı ve hala birçok teleskop buna devam ediyor.

Ancak ışık dalgaları çok ya da az enerjik hale geldikçe, daha hızlı veya daha yavaş hareket ederler. Farklı dalga boylarını incelemek için farklı teleskoplar gereklidir. Kısa dalga boyuna sahip yüksek enerjili ışınımlar, ultraviyole, X ışını ve gama ışını şeklinde görünürken; daha enerjili olanlar daha uzun dalga boylu kızılötesi ve radyo dalgaları yayar.

 Astrometri (Gök ölçümü) GüneşAy ve gezegenlerin ölçüsü olan, astronominin en eski koludur. Gök cisimlerinin hareketlerinin kesin olarak hesaplanması, diğer alanlardaki astronomların, gezegenlerin ve yıldızların doğuşunu ve evrimini modellemesine ve meteor yağmurları ile kuyruklu yıldızların görüneceği zamanın tahmin edilmesine olanak sağlar. Planetary Society’ye göre, “Astrometri güneşdışı gezegenleri tespit etmek için kullanılan eski bir yöntemdir”, buna rağmen işlemesi zor bir süreçtir.

 İlk astronomlar gökyüzündeki desenleri fark ettiler, hareketlerini izlemek ve tahmin etmek için bunları bir düzene koymaya çalıştılar. Takımyıldızları olarak bilinen bu desenler, geçmişte yaşayan insanların mevsimleri öğrenmelerine yardımcı oldu. Yıldızların ve diğer göksel cisimlerin hareketi, Çin, Mısır, Yunanistan, Mezopotamya ve Hindistan başta olmak üzere dünya çapında takip edildi.

Astronomun tasviri, gece teleskop başında yalnız bir ruh gibi düşünülmüştür. Ancak günümüzdeki en zorlu astronomi, bilgisayarlar ve bilgisayarlardan gelen veri ve görüntüler üzerinde çalışan astronomlar tarafından kontrol edilen uzaktaki teleskoplarla -yeryüzündeki veya gökyüzündeki- yapılır.

Fotoğrafçılığın ve özellikle dijital fotoğrafçılığın gelişinden bu yana astronomlar, sadece bilimsel olarak bilgi veren değil insanları büyüleyen inanılmaz fotoğraflar ortaya çıkardılar.

Astronomlar ve uzay uçuşu programları, kendi görevleri başladığında dışarıdan (Ay ya da ötesi) Dünya’ya bakıp Dünya’nın harika fotoğraflarının çekilmesine katkı sağladılar.

Kaynak:

https://www.space.com/16014-astronomy.html

Yazan: Buğra Güneş

Astrofizik Nedir?

Astrofizik nedir?

Astrofizik; fizik ve kimya kanunlarının yardımıyla yıldızlar, gezegenler, galaksiler, bulutsular ve evrendeki diğer nesnelerin doğumu, yaşamı ve ölümünü açıklayan uzay bilimi dalıdır. Astrofizik; astronomi ve kozmolojiyle sürekli bir etkileşim içindedir.

En kalıplaşmış şekilde:

  • Astronomi; pozisyonları, aydınlatma güçlerini, hareketleri ve diğer karakteristik özellikleri ölçer.
  • Astrofizik evrendeki küçük ila orta büyüklükteki yapılar hakkında fiziksel teoriler oluşturur.
  • Kozmoloji ise bunu evrendeki en büyük yapılar ve tüm evren için yapar.

Uygulamada bu alanlar birbirlerine sıkıca kenetlenmiştir. Bir bulutsunun pozisyonunu ya da hangi tür ışık yaydığını sorun, astronom daha önce cevap verebilir. Bulutsunun hangi maddeden ve nasıl oluştuğunu sorun, astrofizikçi konuşmaya başlayacaktır. Verilerin evrenin oluşumuyla nasıl uyduğunu sorun, kozmolog soruya önce atlayacaktır. Fakat dikkat edin,  bu sorulardan herhangi biri için ikisi ya da üçü hemencecik konuşmaya başlayacaktır.

Astrofiziğin hedefleri

Astrofizikçiler evreni ve evrendeki yerimizi anlamaya çalışır. NASA’nın internet sitesine göre NASA’daki astrofizikçilerin hedefleri evrenin nasıl işlediğini keşfetmek, nasıl başladığı ve geliştiğini araştırmak, diğer yıldızların etrafındaki gezegenlerde yaşam aramaktır.

NASA bu hedeflerin 3 geniş soru ürettiğini belirtiyor:

  • Evren nasıl işliyor?
  • Biz buraya nasıl geldik?
  • Yalnız mıyız?

Newton’la başladı

Astronomi en eski bilimlerden biri iken teorik astrofizik Isaac Newton’la başladı. Newton’dan önce astronomlar gök cisimlerinin hareketlerini  fiziksel bir temel olmadan kompleks matematik modeller kullanarak açıklıyorlardı. Newton uydu ve gezegenlerin yörüngelerini ve Dünya’da atılan bir güllenin izlediği yolu aynı anda açıklayan tek bir teori olduğunu gösterdi. Bunun sonucunda Dünya ve gökyüzü için aynı fiziksel kanunların geçerli olduğunu şaşırtıcı bir şekilde kanıtladı.

Muhtemelen Newton’un modelini diğer önceki modellerden ayıran özellik öngörücü olmakla beraber betimleyici olmasıdır. Uranüs’ün yörüngesindeki sapmalara dayanarak astronomlar yeni bir gezegenin pozisyonunu öngördü, yapılan gözlemlerden sonra bu gezene Neptün adı verildi. Öngörücü olmakla beraber betimleyici olmak bir modern bilim işareti ve astrofizik de bu kategoride.

Astrofizikteki dönüm noktaları

Uzaktaki cisimlerle etkileşime geçmenin tek yolu yaydıkları radyasyonu gözlemlemektir. Çoğu astrofizikçi bunu radyasyon üreten mekanizmaları açıklayan teoriler ortaya çıkararak ve bundan en fazla bilgiyi nasıl çıkaracağımızla ilgili fikirler sağlayarak yapmak zorunda. Yıldızların doğasıyla ilgili ilk fikirler, 19. yüzyılın ortalarında, çiçeği burnunda bir bilim olan spektral analizden elde edilmiştir. Spektral analiz, belirli maddelerin ısıtıldıklarında absorbe ettikleri ve yaydıkları belirli ışık frekanslarını gözlemlemedir. Spektral analiz, hem yeni teorileri yönlendiren hem de test eden uzay bilimleri üçlüsü için önemlidir.

İlkel spektroskopi, yıldızlarda da Dünya’da bulunan maddeler olduğunu ilk kanıtlayan çalışmaydı. Spektroskopi, bazı bulutsuların tamamen gaz halindeyken bazılarının ise yıldız içerdiğini gösterdi. Bu daha sonra, bazı bulutsuların aslında bulutsu olmadığı fikrini pekiştirdi. Peki onlar neydi? Onlar başka galaksilerdi!

1920’lerin başlarında, Cecilia Payne, spektroskopi kullanarak yıldızların ağırlıklı olarak hidrojenden oluştuğunu (en azından yaşlılıklarına kadar) keşfetti. Ayrıca yıldızların spektrumları astrofizikçilere yıldızların Dünya’ya doğru ya da Dünya’dan uzağa ne kadar hızla hareket ettiklerini belirlemelerine yardımcı oldu. Doppler kayması nedeniyle, bir aracın yaydığı sesin bize doğru gelirken ya da bizden uzaklaşırken değişmesi gibi yıldızların spektrumları da aynı şekilde değişecektir. 1930’larda Edwin Hubble, Doppler kayması ve Einstein’ın genel görelilik teorisini birleştirerek evrenin genişlediğine dair sağlam kanıtlar bulmuştur. Bu Einstein’ın teorisi tarafından da öngörülüyordu ve birlikte Big Bang Teorisinin temelini oluşturuyorlar.

Ayrıca 19. yüzyılın ortalarında, fizikçiler Lord Kelvin (William Thomson) ve Gustav Von Helmholtz, kütleçekimsel çökmenin Güneş’e güç sağlayabileceği tahmininde bulundular, fakat eninde sonunda bu şekilde üretilen enerjinin sadece 100.000 yıl yeteceğini fark ettiler. Elli yıl sonra, Einstein’ın ünlü E = mc2 denklemi, astrofizikçilere, gerçek enerji kaynağının ne olabileceğine dair ilk kanıtı sundu (her ne kadar kütleçekimsel çökmenin önemli bir rol oynadığı ortaya çıksa da). Nükleer fizik, kuantum mekaniği ve parçacık fiziği, 20. yüzyılın ilk yarısında gelişmesinden dolayı nükleer füzyonun yıldızlara nasıl güç sağlayabileceğine dair teorileri formüle etmek mümkün hale geldi. Bu teoriler, yıldızların nasıl oluştuğunu, yaşadığını ve öldüğünü tanımlıyor ve aynı zamanda yıldız türlerinin spektrumları, aydınlatma güçleri, yaşları ve diğer özelliklerinde gözlenen dağılımı başarılı bir şekilde açıklar.

Astrofizik, yıldızların ve evrendeki diğer uzaktaki cisimlerin fiziğidir, fakat aynı zamanda Dünya’ya da yakındır. Big Bang Teorisine göre, ilk yıldızlar neredeyse tamamen hidrojenden oluşuyordu. Onlara enerji sağlayan nükleer füzyon süreci, daha ağır bir element olan helyumu oluşturmak için hidrojen atomlarını çarpıştırır. 1957 yılında, ikisi de astronom olan karı koca Geoffrey ve Margaret Burbidge, fizikçi William Alfred Fowler ve Fred Hoyle ile birlikte yıldızların yaşlandıkça nasıl daha da ağır olan elementleri oluşturduğunu gösterdiler. Sadece daha yakın tarihli yıldızların yaşamlarının son aşamalarında, Dünya’yı oluşturan elementlerin(örnek olarak demir (%32,1), oksijen (%30,1), silisyum (%15,1)) üretildiği görülmektedir. Bu elementlerden biri olan karbon, oksijen ile birlikte, biz de dahil olmak üzere tüm canlıların en önemli kısmını oluşturuyor. Böylelikle, astrofizik tamamen yıldız olmasak da tamamen yıldız tozundan olduğumuzu bize söylüyor.

Kariyer olarak astrofizik

Astrofizikçi olmak için yıllarca gözlem yapmak, çalışmak ve deneyim kazanmak gerekiyor. Fakat ortaokul ve lisede bile astronomi kulüplerine katılarak, yerel astronomi etkinliklerine giderek, astronomi ve astrofizik alanında ücretsiz çevrimiçi dersler alarak ve Space.com gibi web sitelerindek ilgili haberleri takip ederek az da olsa işin içine girebilirsiniz.

Üniversitede öğrenciler astrofizikte doktora yapmayı ve daha sonra astrofizikte doktora sonrası bir pozisyonda görev almayı hedeflemelidir. Astrofizikçiler devlette, üniversite laboratuvarlarında ve bazen de özel organizasyonlarda çalışabilirler.

Study.com, astrofizikçi olma yolunda ilerlemeniz için aşağıdaki adımları önermektedir:

Lise boyunca matematik ve fen dersleri alın. Çok çeşitli fen dersleri aldığınızdan emin olun. Astronomi ve astrofizik, evrendeki fenomenleri daha iyi anlamak için sık sık biyoloji, kimya ve diğer bilimlerin öğelerini birleştirir. Ayrıca matematik ve fen alanında herhangi bir yaz işini veya stajı göz önünde bulundurun. Gönüllü çalışma öz geçmişinizi desteklemede yardımcı olabilir.

Matematik ya da fenle ilgili bir lisans derecesine devam edin. Astrofizikte lisans ideal olmasına karşın o alana başka birçok yol var. Bilgisayar bilimlerinde ön lisans ve lisans eğitimi alabilirsiniz. Örneğin bu, verileri analiz etmenize yardımcı olmanız önemlidir. Hangi programların size yardımcı olabileceğini öğrenmek için lise rehberlik danışmanı veya yerel üniversitenizle konuşmak en iyi yoldur.

Araştırma fırsatlarından yararlanın. Pek çok üniversitede öğrencilerin keşiflere katılabildiği ve hatta bazen bu çalışmaların yayınlandığı laboratuvarlar vardır. NASA gibi ajanslar da zaman zaman staj imkanı sunuyor.

Astrofizikte doktora yapın. Doktora meşakatli bir yol fakat ABD İşçi İstatistikleri Bürosu, astrofizikçilerin büyük çoğunluğunun doktora yaptığını belirtiyor. Geniş bir bilgi tabanına sahip olmak için astronomi, bilgisayar bilimi, matematik, fizik ve istatistik dersleri aldığınızdan emin olun.

2015 yılında, o zamanlar Arizona Eyalet Üniversitesinde olan gezegensel astrofizikçi Natalie Hinkel Lifehacker’a ayrıntılı bir röportaj verdi. Bu röportaj, genç bir astrofizik araştırmacı olmanın müfakatları ve zorlukları hakkında insanlara fikir sağladı. Araştırmasını yaptığı uzun yılları, sık sık iş değiştirmesini, çalışma saatlerini ve rekabetçi bir alanda kadın olmanın nasıl bir şey olduğunu anlattı. Ayrıca, günlük yaptığı şeylere dair ilginç bir bakış açısı vardı. Zamanının çok az bir kısmını teleskop kullanarak harcıyor.

Hinkel, Lifehacker’a verdiği röportajda “Zamanımın çok büyük bir kısmını programlamayla uğraşarak geçiriyorum. Pek çok insan astronomların bütün zamanını teleskop kullanarak geçirdiği sanıyor fakat o, işin hiç değilse küçük bir kısmı. Bazı gözlemler yapıyorum fakat son birkaç yılda toplam yaklaşık iki hafta için iki kez gözlem yaptım.” diyor.

“Bir veri aldığında onu kısaltman (örneğin kötü kısımlarını çıkartarak ve onu gerçeğe uygun hale getirerek), diğer verilerle ilişkilendirerek büyük resmi görmen ve daha sonra bulgularını kağıda yazman lazım. Her gözlem çalışması tipik olarak çoklu yıldızlardan veri sağladığından yeterli iş yapmak için tüm zamanınızı teleskopta harcamanıza gerek kalmıyor.”

Kaynakça:

https://www.space.com/26218-astrophysics.html

Yazan: Ahmet Arda Pektaş

Astronomi ve Fizik Alanında Yapılmış En Yaratıcı 5 Deney

Modern evren anlayışımız, yüzyıllar boyunca binlerce yaratıcı ve çalışkan bilim insanı tarafından tasarlanmış ve uygulanmış yüzlerce deney üzerine inşa edilmiştir. Bu deneylerden birkaçının çığır açıcı olmaları ve olayların işleyiş şekilleri hakkındaki görüşümüzü değiştirmeleri nedeniyle ön plana çıkması normal. Fakat hangilerinin evrenin bazı basit gerçeklerini zorla değil de ustalıkla ortaya çıkmasını sağladığını bulmak zor iş.

Ben de bu yazımda sizlere Space.com’un astronomi ve fizik alanında seçtiği en yaratıcı 5 deneyden bahsedeceğim.

İlk ötegezegen

1992 yılında Plüton’un keşfinden 60 yıldan fazla zaman geçmişken astronomlar bizim Güneş sistemimizde olmayan ve başka bir yıldız etrafında dolanan yeni bir gezegen bulmak için can atıyorlardı. Astronomlar, uzak bir yıldızdan gelen ışığı dikkatli bir şekilde inceleyerek herhangi bir gezegenin yörüngesi boyunca ileri ve geri yalpalamasından kaynaklanan, kırmızıya kayma ve maviye kayma adı verilen ışığın dalga boyundaki bariz değişimleri görebileceklerini biliyorlardı.

Ne yazık ki o zamanlar yıldız ışığı hakkında yeterince hassas gözlemlerimiz yoktu. Tek istisna süpernovalardan sonra bazı yıldızlardan arta kalan pulsarlardı. Bu cisimlerin hızla dönen bir nötron yıldızından çıkan radyasyon ışınlarından kaynaklanan ve neredeyse doğal olmayan bir biçimde ortaya çıkan hassas sinyalleri yörüngede dolaşan gezegenlerin kütleçekimsel etkisini tespit etmek için kullanılabilir. Kütle çekim kuvveti pulsar patlamalarının zamanlamasını bilim insanlarının ölçebileceği şekilde değiştirir.

Fakat bir pulsar bir gezegen sistemine nasıl ev sahipliği yapabilirdi? Şüphesiz ki bir yıldızın son günlerindeki şiddeti, çevresinde bulunan herhangi bir yörüngeyi kararsız hale getirecektir. Fakat görünen o ki doğa mantıksal konulara pek önem vermiyor. Örneğin tanımlanan ilk ötegezegen, bir pulsarın (PSR B1257+12) yörüngesi etrafında dönüyordu.

İşte buradaki zekice şey: saptaması zor olan bir şeyi ortaya çıkarmak için doğanın kendisi tarafından üretilen ve garip bir biçimde kesin olan yöntemi kullanmak.

Dünya’nın boyutu

Düşündüğünüzde Dünya’nın yuvarlak olduğunu fark etmek çok fazla zamanınızı almaz. Ayrıca buna kanıt olarak birçok örnek gösterebilirsiniz: denizde gemilerin önce alt taraflarından kaybolmaları, Ay tutulması sırasında Dünya’nın gölgesinin yuvarlak olması, Güney yarım küreden görülen yıldızların Kuzey yarım küreden görülememesi… Eski çağlardaki birçok insan (en azından bu problem hakkında düşünme lüksü olanlar ve buna Yunanlar da dahil) bu gerçeği kabul etmiş görünüyorlardı.

Fakat bu dev küre ne kadar büyüktü?

Bakalım bu konuda Eratosthenes ne diyor? Eratosthenes, MÖ 250 civarında İskenderiye’de yaşayan Yunan bir bilgin. Dünya’nın çevresini şehirden ayrılmasına gerek bile kalmadan çok zekice bir yöntemle hesapladı. Yaz gün dönümü boyunca İskenderiye’de gölge oluştuğunu fakat Mısır’ın güney kısmında yer alan Syene şehrinde (bugünkü Asvan’a yakın bir yerde) gölge oluşmadığını biliyordu.

Eğer Eratosthenes Syene’a olan mesafeyi bilseydi, Dünya tamamen küresel olsaydı, Güneş gerçekten gün dönümü sırasında direk olarak Syene üzerinde olsaydı ve İskenderiye ve Syene kuzey-güney hattı boyunca mükemmel bir şekilde uzansaydı, o zaman İskenderiye’deki gölgelerin uzunluğunu, gün dönümü sırasında iki şehir arasındaki açıyı ve geometri denen bu yeni tekniği kullanarak gezegenin çevresini ölçmek için kullanabilirdi.

Tüm bu koşullar Eratosthenes’in Dünya’nın çevresini yaklaşık 45.000 kilometre (28.000 mil) ölçmesini sağlamış olmalı ki bu değer gerçek değerinden sadece %10 farklı.

Einstein’ın düşünce deneyleri

Bütün deneyler laboratuvarda gerçekleşmez. Bazen de sadece kafanızda hayali bir senaryo kurarsınız, matematiğin sizi sonuca götürmesine izin verirsiniz ve evren hakkında bilgi edinirsiniz. Einstein da bu konuda doğuştan uzmandı.

Einstein’ın deyimiyle onun ilk “gedankenexperiment” (Almanca “düşünce deneyi”) çok genç yaşlarda aklına geldi. Bir ışık demetiyle ışık hızında giden bir bisiklet kullanarak yarışsaydı ne görecekti?

Işık elektromanyetik dalgalardan oluştuğu için, çok hızlı pedal çevirdiğinde bu dalgaları yanında duruyormuş gibi göreceğini düşündü. Fakat elektromanyetik dalgaları hiçbir zaman duruyor olarak göremeyiz. O zaman bunun yerine ışık hızında gitmek imkansızdı. Bu düşünceyi kullanarak ve bir takım matematiksel işlemlerden sonra daha önceden de bildiğiniz gibi özel görelilik kuramını geliştirdi.

Einstein sonraki hayatında da buna benzer bir numara kullandı. Penceresiz bir asansördeyseniz ve biri kabloyu kesip serbest düşüşe geçirdiğinde ne olur? Ölümüne mi düşersiniz yoksa basitçe yer çekimsiz ortamda etrafa tekme mi savurursunuz?

Einstein’ın cevabı şuydu: Aralarındaki farkı söylemek imkânsız. Eylemsiz kütle (bir cismin kendisine etki eden herhangi bir kuvvete verdiği cevap), yer çekimi kütlesiyle aynıdır (bir cismin yer çekimine verdiği tepkinin gücü). Bu basit kavramı ve önemli bir miktarda kütleyi alırsanız ortaya genel görelilik kuramı çıkar.

Millikan’ın yağ damlası deneyi

1909 yılında fizikçiler Robert Millikan ve Harvey Fletcher tarafından gerçekleştirilen bu deney, yaratıcı tasarımı ya da doğayı kendi oyununda alt etme çabaları nedeniyle değil de bunların yerine inşaatının basitliği ve ölçümde yapılan aşırı titizlik nedeniyle o kadar da akıllıca olmadı. Hakkında pek yazı yazılmadığı için de o da bu listede yer alıyor.

O zamanlarda bilim insanları elektrik yükünün var olduğunu biliyorlardı ama hakkında hiçbir şey bilmiyorlardı. Temel yük miktarları var mıydı? Ya da yük miktarı, kütle gibi bir şey miydi? Elektronun yükü neydi?

Millikan ve ortağı, bir haznenin içine elektrikle yüklenmiş yağ damlaları damlatan bir cihaz geliştirdi. Düşen damlalar çok çabucak terminal hızlarına (düşen cisimlerin yer çekiminden dolayı ulaşabilecekleri maksimum hızdır) ulaşırlar. Eğer havanın yoğunluğunu, yağın yoğunluğunu ve yer çekimi ivmesini bilirseniz terminal hızlarını ölçerek yağ damlalarının kütlesini bulabilirsiniz.

Millikan, elektrik alan uygulayarak elektriksel kuvvetle yer çekimi kuvvetinin dengelenmesiyle yağ damlalarını yavaşlatıp havada durdurabilirdi. Böylelikle de her bir damlanın yükünü ölçebilirdi.

Bu ölçümleri birkaç kez tekrarladıktan sonra şu iki sonuca vardı: Tek bir elektronun yükü -1.6×10-19 (bu temel yük) ve tüm yükler bu yük temel alınarak oluşturulmalı (kuarklar ve onların kesirli yükleri hariç ama konumuz bu değil). Bu da demek oluyor ki -1.9×10-19 ve -8.7×10-19 gibi yük değerleri bulamazsınız.

Foucault sarkacı

Nasıl eski çağlarda insanlar daha çok Dünya’nın küreselliği üzerine fikir yürüttüyse 1800’lerin ortalarında da bir şeyler düşünme lüksüne sahip olan insanlar Dünya’nın dönüşü üzerine fikir yürütmüştür. Ama ya bu konu hakkında gerçekten konuşulmamış ya da ne yaptığını bilmeyen insanlar bu konuyla ilgilenmiş.

Fizikçi Léon Foucault bunu değiştirmek istedi ve bunu da başarılı bir şekilde yaptı. Bir sarkaç sallanırken Dünya’nın dönmesine rağmen kendi düzlemini korur. Dünya’nın dönmesine bağlı olarak bizim perspektifimizden yer sabit kalır ve sarkaç gün boyunca yönelimini korur.

1851’de Foucault, Paris’teki Panthéon’da böyle bir sarkaç kurdu. Böylelikle sarkacın yönelimindeki saat yönüne yavaşça olan değişimi (saatte yaklaşık 11,3°) göstererek Dünya’nın döndüğünü ispatladı. Bu medyada büyük olay oldu. Sarkacın tanıtımı bir virüs gibi yayıldı (1800’lerde ne kadar yayılabildiyse o kadar). Çok geçmeden Foucault sarkacı dünya çapındaki bilim sergilerinin temeli oldu.

Heyecan verici! İnsanlar dünyanın dönüşü hakkında konuşuyordu! Ve işte buradaki zekice şey: bilimi erişilebilir hale getirmek ve hakkında konuşulmaya değecek bir şey yapmak.

Kaynakça:

https://www.space.com/36307-5-most-ingenious-experiments.html

Çeviri: Ahmet Arda Pektaş

Ay’ın Bir Zamanlar Atmosferi Vardı

Elde edilen yeni bilgiler, 3 veya 4 milyar yıl önce büyük yanardağ patlamalarından çıkan gazlarla; ve bu gazların Ay’ın yüzeyine çıkışı, uzaya sızmasından çok daha hızlı olmasıyla; Ay’ın atmosferinin oluştuğunu ortaya koydu. Bu çalışma Dünya ve Gezegen Bilim Dergisi’nde (Earth and Planetary Science Letters) yayımlandı.

Ay’a baktığımızda onun yüzeyinde; yüzeyini karartan volkanik karataşların – göktaşlarının çarpmasıyla oluşan – yüzeyindeki büyük havzaları kapladığını görürüz. Bu engin volkanik karataş denizi (Maria), Ay’ın hala sıcak olduğu zamanlarda yüzlerce kilometreyi bulan magma patlamalarıyla oluştu. Apollo’dan gelen örneklerin incelenmesiyle Ay’dan çıkan magmaların içinde karbon monoksit, su bileşenler, kükürt ve başka uçucu maddeler gibi pek çok gaz halinde bileşenler olduğu keşfedildi.

Bu yeni araştırmada, NASA’nın Marshall Uzay ve Havacılık Merkezi’nin Araştırma Görevlisi Dr. Debra H. Needham ve Ay ve Gezegenler Enstitüsü’nde Üst Düzey Personel Dr. David A. Kring, yanardağlardan çıkan gazların miktarını ölçtü ve bu gazların Ay’ın etrafında birikerek geçici bir atmosfer oluşturduğunu ortaya koydu. 3.5 milyar yıl önce, yanardağların en aktif olduğu zamanda, atmosferin en kalın halinde olduğu tahmin ediliyor, bununla birlikte uzaya saçılmadan önce atmosferin neredeyse 70 milyon yıl boyunca durduğu sanılıyor.

Fotoğrafta, Ay’ın Imbrium Havzası’nda bulunan yanardağların patlamasıyla çıkan gazların atmosferi oluşturması tasvir edilmiştir. Telif Hakkı: NASA MSFC

3.5 ve 3.8 milyar yıl önce; en büyük iki gaz atımı, lav denizinin Serenitatis ve Ibrium havzalarını doldurdu. Bu lav kıyılarını keşfedenler de Apollo 15 ve 17 görevlerinin astronotları oldu. Astronotların kıyılardan topladığı örnekler patlamaların olduğu zamanı belirlemede yardımcı olmakta kalmadı, yaşanan patlamalardan dolayı gaz çıkışlarının olduğunu da kanıtladı.

Ay hakkında edindiğimiz bu yeni bilgiler gelecekte yapılacak keşifler için aynı zamanda bir anahtar. Needham ve Kring’in araştırması, uçucu maddelerin Ay’ın kutuplarına yakın soğuk ve kalıcı karanlık bölgelerinde bulunan buz kaynaklarının içinde olduğuna işaret ediyor, bu da uzun süreli bir keşif için olan ihtiyaçları karşılayabilir. Buzlu kaynaklarda saklanan uçucular Ay’da (ve belki başka uzay keşifleri için) görev alacak astronotlar için yakıt ve hava kaynağı olabilir.

Yeni araştırma, Kring tarafından yönetilen ve NASA’nın Güneş Sistemi Keşif ve Araştırma Sanal Enstitüsü (Solar System Exploration Research Virtual Institute) tarafından desteklenen LPI-Johnson Uzay Merkezi Ay Bilimi ve Araştırmaları Merkezi’nden (Center for Lunar Science and Exploration) başlatıldı. Needham, Linux Uzmanlık Enstitüsü’nde (LPI) eski bir doktora sonrası araştırmacıdır.

Kaynak:

NASA Marshall Uzay ve Havacılık Merkezi , Ay ve Gezegenler Enstitüsü 

Referans:

Debra H. Needham, David A. Kring. Lunar volcanism produced a transient atmosphere around the ancient Moon. (Ay’daki yanardağ patlamaları Ay’da geçici atmosfer oluşturdu) Earth and Planetary Science Letters, 2017; 478: 175 DOI: 10.1016/j.epsl.2017.09.002

Ay ve Gezegenler Enstitüsü’nden alınmıştır. İçerik yazının uzunluğu ve anlaşılır olması için değiştirilmiş olabilir.

Makale Science Daily Sitesi’nden çevrilmiştir.

Çeviri: Tolga Can Menekşe

Astroloji Neden Bilim Değildir?

Astroloji Neden Bilim Değildir?

Mağara çağlarından bu yana, insanların ilgisini çeken bir yer olmuştur gökyüzü. Gökyüzünü aydınlatan o hayat kaynağı sarı ışık huzmesi ve bu büyük ışık huzmesinin yokluğunda ortaya çıkan ufak ateş parçaları… İnsanların bu cisimlerin belirli bir kurallar dizisi dâhilinde hareket ettiğini fark etmeleri uzun sürmedi. Bundan dolayı da eski zamanlarda insanlar için gökyüzünü okumak, hayatta kalabilmeleri için oldukça gerekli bir hale geldi çünkü gökyüzündeki hareketlilik, atalarımız için bir nevi takvim niteliğindeydi. Tarımın icat edilmesinden sonra ekimin ve hasatın ne zaman yapılması gerektiğini bu gökyüzü haritası söylüyordu. Güneş ve yıldızlar mevsimleri belirliyor, Ay ise gel-gitleri, birçok hayvanın yaşam evrelerini belirliyordu. Güneş, yıldızlar ve Ay ‘ın insan yaşamı üzeri etkisi olduğuna göre atalarımızın aklına şu soru gelmiş olmalı: “Gökteki öteki cisimler insan yaşamını etkiliyorsa, gezegenlerin etkisi ne olabilir ?”

Astrolojiye girmeden önce takımyıldız kavramını anlatmamız gerekir. Takımyıldızlar, antik çağlarda tanrılar, savaşçılar gibi karakterlerin sahip olduğu mitolojik hikâyelerin adeta tuvalleri idi. İnanılmaz bir hayal günüce sahip bu insanlar, yarattıkları eşsiz mitolojik kültürlerini ve destanlarını gökyüzüne dökmüşlerdi. Öyle ki, bu hikâyelere göre avcı avını hedef alıyor, Pegasus, kanatlanıp gökyüzüne uçuyor ve prenses Andromeda ise hapis düştüğü zindandan kaçıyordu. O zamanlardaki insanlar için gökyüzündeki yıldızlar adeta “noktaları birleştir” oyunu gibiydi. Bu birleştirilmiş noktalar arasında önemli olan birkaç takımyıldız vardır. Bu takımyıldızların özelliği Güneş’in bulunduğu yörünge içinde olmuş olmalarıdır ve bu özellik, Güneş’in hangi mevsimde hangi takımyıldız üzerinde olduğunu belirtmeye olanak sağlar. Antik çağlarda bu yapının yardımı ile “Zodyak Çemberi” adı verilen takvim benzeri bir cetvel yapılmıştı. Bu cetvel, tutulmaları ve gündönümlerini(ekinoks) tahmin etmeye olanak vermekteydi. Astrolojinin ortaya çıkışı, bu takımyıldızların insan hayatını etkileyip etkilemediğini sorgulanması ile ortaya çıkmaya başladı.

Astrolojinin kökenleri Batlamyus adıyla bilinen Claudius Ptolemaus’a kadar iner. Babilliler gökyüzünü 12’ye ayırmış ve bugün aşina olduğumuz burçları ortaya çıkarmışlardır. Carl Sagan Cosmos adlı kitabında Batlamyus’un Tetrabiblos adlı astoloji kitabından bir kaydı aktarmış. Kitapta yazanlara göre Batlamyus gezegenlerin sadece insanların huylarını etkilediğine inanmakla kalmıyor aynı zamanda bedensel özelliklerini de etkilediğinden bahsediyor. Bir teoriye bilimsel diyebilmemiz için deneysel verilerle desteklenebilmesi gerekir. Ancak Astrolojinin ve yıldız fallarının birçok mantıksal soruya cevap veremediği ortada. Mesela,

  • İkizlerin yaşamı… İkizlerin doğumu aynı gezegenin belirli bir yerde oluşuna rastlar. Fakat yaşadıkları hayatlar birbirinden farklıdır.
  • Burçların belirlenmesinde ana rahmine düşme zamanı değil de doğum saati ve günü göz önüne alınır.
  • Çoğu Astrolojik terim, Dünyanın merkezde olduğuna inanıldığı zamandan kalmadır. Güneş Merkezli modellerde anlamlarını yitirirler.
  • Peki ya, Uranüs, Neptün ve Plüton… Antik çağda bu gezegenler gözlemlenemiyordu. Gezegenlerin konumunun, insan davranışı ve olaylar üzerine bir etkisi varsa, o zaman bu gök cisimleri olmadan kurulmuş olan astrolojik denklemler nasıl olur da doğru olabilir?
  • Bahsedilen Güneş yörüngesine Aralık-Ocak ayları içerisinde Yılancı adı verilen bir takımyıldız bulunmakta, bu takımyıldız astrologlar tarafından yok sayılmıştır.
  • Astrologlar tarafından bir burcun etki süresi, Güneş’in arkasında kaldığı süreye göre belirlenmekte, ancak tüm burç takımyıldızları aynı büyüklükte değil. Mesela Akrep Burcunun Güneş arkasında kalma süresi iki ay iken Terazinin yarım aydır. Dolayısıyla her burcun etki süresinin bir ay olması anlamsızdır.

Astrolojiye ve yıldız fallarına olan inancı tersine çevirmek için girişimde bulunan Bart Bok, Lawrence Jerome ve Paul Kurtz 1975 yılında 19‘u Nobel ödüllü alan 192 bilim insanı tarafından imzalanan bir bildiri yayınladılar. Bildiride verilen tepki, biraz da günümüz basın kuruşlarınadır zira günlük gazetelerde hep fallar ve burç yorumları görebilirken nadiren bilim haberleri görebilirsiniz. Tamamen antik çağlara ait uydurma fikirler üzerinden insanlar günümüzde para kazanmaktadır.

Astrolojiye olan inanışta  “Forer (Barnum) Etkisi” de oldukça etkilidir, çünkü genel topluma hitap eden şeyler kişisel de algılanabilmektedir. Aslında bu söylenenler tahmin değil öneri niteliğindedir. Dünyada terazi burcuna sahip milyonlarca insan var. Astrologlar genel yorumlar yapıyorlar ki birçok insana uysun. Bu belirsizlik bilimin çürütülebilirlik özelliğine de ortadan kaldırıp, sözde bilim olduğuna işaret eden bir diğer neden olarak gösterilebilir.

Yıldızlar ve gezgenler bizleri elbette etkilerler, ancak aramızdaki bağ astrologların önerdiğinden çok daha muhteşemdir. Bizler şu anda gökyüzünde gördüğünüz milyarlarca ve milyarlarca yıldıza, etrafımızı saran bir higgs alanıyla, kütleçekimi alanlarıyla bağlıyız ve yaptığımız her ufak hareket, bu cisimlere etki etmekte. Bu açıdan burcunuz size 3 vakte kadar ne olacağını söyleyemez ancak gezegenimizin sonraki zamanlardaki konumu hakkında fikir verebilir.

Kaynaklar:

Cosmos – Carl Sagan

https://www.academia.edu/2813746/Why_astrology_is_a_pseudoscience

Bu yazı, NBeyin Dergisi Şubat 2016 sayısında yayımlanmıştır

Yazarlar

Damla Şahinbaş, ODTÜ Fen Bilimleri Öğretmenliği Bölümü

Özgür Can Özüdoğru, ODTÜ Fizik Bölümü

Uzayda Ateş Nasıl Yanar?

Uzayda Ateş Nasıl Yanar?

Ateş insanlık tarihindeki ilk ve en önemli bilimsel buluşlardan biridir. Binlerce yıl boyunca insanlık tarihinde belirli bir çağı kapatıp diğerini açmıştır. Kimi insanlar onu tanrı ilan etmiş, kimisi de karşı aşiretin yemeklerini çalmak için kullanmıştır. Bu gizemli tepkimenin tam anlamıyla ne olduğunu anlamamız ise, onu kullanmaya başlamamızdan binlerce yıl sonrasına dayanır.

 Ateş, anlaşılması kolay bir şey değildir, çünkü içindeki tepkimeler oldukça karmaşıktır. Ateşin gizemini anlayabilmek için ise maddenin gizemli bir hali olan plazmayı anlamak gerekir. Ancak bu konuda pek şanslı değiliz çünkü bu hala Dünya’da çoğunlukla ateşte rastlamaktayız.. Ayrıca yalnızca sıradan bir mum alevinde bile binlerce farklı kimyasal tepkime meydana gelmekte. Durumu biraz basitleştirirsek aslında gördüğümüz ve bize ısı ile ışık veren tepkime havadaki Hidrokarbonların, belirli bir sürtünme ya da kıvılcım yardımıyla Oksijen ile tepkimeye girerek  ‘i ve suyu açığa çıkartmasıdır. Buna yanma denir. Kozmosun tamamında yanma eyleminin temel gereksinimi Oksijen molekülleridir.

Peki, oksijenin etrafta bulunmadığı ama bizim laboratuarımızda ekleyebileceğimiz suni bir ortamda ateş nasıl olur? Bunun yanıtını Uzay kimyacıları Uluslararası Uzay İstasyonu ISS’de arıyorlar. Yakın zamanda da elde ettikleri sonuçları gösteren bir açıklamada bulundular.

ISS gibi düşük yerçekimli ortamlarda ateşin hareketini araştırmak üzerine FLEX adında bir proje oluşturuldu. Projede yer alan Dr. Forman A. Williams “Elementler alev almadan yanıyorlar, bu cümleyi ilk kurduğumda ben de dediğime inanmamıştım.” diye araştırma sonucunu açıkladı. Normal koşullarda yanan bir alev belirli bir miktar  ve Su oluşturur, bununla birlikte ortaya 1500 ile 2000 K ( yaklaşık 1227 ve 1727 C̊) arasında sıcaklık açığa çıkar. Dolayısıyla bu yanma tepkimesi; birçoğu gibi dışarıya ısıveren, yani ekzotermik, bir tepkimedir.

Uzayda oluşturduğumuz ateşlerde ise kimyasal açıdan Dünya’dakinden bambaşka bir durum gözlemlendi. Uzayda yanan bir ateşte  ve Su açığa çıkmıyor. Yerine CO(Karbon Monoksit) ve Formaldehit( ) adında zehirli bir gaz açığa çıkarıyor. Dünya’da da uzay ortamı gibi izole ortamlarda bu tip alevler üretilmiş, ancak hemen yok olmuşlardı.

Henüz böyle bir sonuçla karşılaşmamızın tam sebebi araştırılırken farkına varıldı ki bu yanma eylemi 500 K (yaklaşık 227 C̊) kadar bir sıcaklık açığa çıkmakta. Elbette bizim günlük hayatımız için bu bile yüksek bir miktar, fakat tepkimenin gerçekleşmsi için gereken ısının yarısı bile değil. Enerjinin ısı yoluyla değil de başka bir yolla dönüştürülüyor olması şu an ISS’deki kimyacıların araştırma konusu.

Araştırma görevlilerinden Dr. Williams ekliyor “Uzaydaki yanma tepkimeleri hakkında daha fazla fikir sahibi olmamız, uzayda yanma tepkimeleri ile oluşturulacak farklı motorlar için bize daha fazla bilgi sağlayacak. Bundan dolayı bu deneylerin ve pratikteki tüm sonuçların yeni bir teoriye filiz vermesi beklenmekte. Bu tür bir deneyi yapmak için ise Uzaydaki en büyük tesis olan ISS mükemmel bir yer.”

Yaşam hakkında elde ettiğimiz bilgiler arttıkça cevaplamak istediğimiz sorular da aynı oranda artıyor. Ancak Richard Feynman’ın dediği gibi “Bilimde henüz açıklayamadığımız soruların olması beni korkuya sürüklemiyor, aksine çocuksu merakımı yeniden tetikleyip daha büyük bir zevk ile araştırmalarıma devam etmemi sağlıyor.”

Şubat 2013, Bilim ve Gelecek Dergisi

Dr. Tony Philips’in “Strange Flames On The ISS” Makalesinden yararlanılmıştır.

Yazan: Özgür Can Özüdoğru